CORPO DE BOMBEIROS MILITAR DE SANTA CATARINA DIRETORIA DE ENSINO CENTRO DE ENSINO BOMBEIRO MILITAR ACADEMIA BOMBEIRO MILITAR

MARCELO DELLA GIUSTINA DA SILVA

UM ESTUDO PARA DEFINIÇÃO DO USO DE ROUPAS DE PROTEÇÃO QUÍMICA PARA O ATENDIMENTO DE EMERGÊNCIAS COM PRODUTOS PERIGOSOS NO CBMSC

FLORIANÓPOLIS AGOSTO 2012

Marcelo Della	a Giustina da Silva
	as de proteção química para o atendimento de lutos perigosos no CBMSC
	Monografia apresentada como pré-requisito
	para conclusão do Curso de Formação de Oficiais do Corpo de Bombeiros Militar de Santa Catarina.
Orientador(a): Cel. RR l	BM Evandro Carlos Gevaerd

Marcelo Della Giustina da Silva	
Um estudo para definição do uso de roup emergências com produtos perigosos no o	as de proteção química para o atendimento de CBMSC
	Monografia apresentada como pré-requisito para conclusão do Curso de Formação de Oficiais do Corpo de Bombeiros Militar de Santa Catarina.
	Florianópolis (SC), 22 de agosto de 2012.
	Cel RR BM Evandro Carlos Gevaerd - Mestre
	Professor Orientador
	1° Ten Daniel Gevaerd Muller - Graduado
	Membro da Banca Examinadora

2° Ten Fernando Ireno Vieira - Graduado Membro da Banca Examinadora

Dedico este trabalho ao meu pai, que compartilha da realização deste sonho, minha irmã, parentes e amigos pelo incentivo e apoio incondicional dados a mim; à minha mãe que ao lado do pai eterno me ilumina a cada dia e principalmente a Deus responsável por tudo isso.

AGRADECIMENTOS

Agradeço primeiramente a Deus, por me proporcionar a realização de um sonho, por me proteger e guiar meus passos.

Ao meu pai, que desde pequeno foi um exemplo de bombeiro militar, que me mostrou o caminho certo e que dedicou sua vida para proporcionar-me momentos felizes e que hoje compartilha comigo deste sonho.

À minha mãe, que infelizmente não pode estar presente em corpo, mas com certeza acompanha-me no meu trajeto. Agradeço também à minha irmã, pelas diversas demonstrações de carinho e amor, que tanto me alegraram nesta trajetória.

Aos familiares e amigos, que nunca me deixaram sozinho, sempre me apoiando, transmitindo confiança carinho e incentivo.

Aos meus colegas e amigos, pelos bons momentos proporcionados durante estes anos de convivência.

Ao meu orientador, pelo conhecimento e experiência transmitidos durante a elaboração deste trabalho.

"O verdadeiro valor das coisas é o esforço e o problema de as adquirir." (Adam Smith)

RESUMO

Este trabalho teve como meta auxiliar os bombeiros na seleção adequada da roupa de proteção química (RPQ) quando em atuação em emergências com produtos perigosos (EPP). Trazendo informações como as formas de classificação, requisitos de desempenho, tipos de costura e formas de descontaminação que possam elucidar as dúvidas destes usuários, além de verificar qual a classe de risco que mais circula nas rodovias catarinenses e as que são mais frequentes nos Batalhões de Bombeiro Militar (BBM). O trabalho empregou o método de abordagem hipotético-dedutivo, uma natureza exploratória, utilizando a documentação direta como técnica de pesquisa. Os dados foram levantados através de pesquisa bibliográficas, e foi utilizado documentos primários e secundários. A RPQ é um dos equipamentos de proteção individual utilizado pelo bombeiro quando em atuação em uma EPP. As informações foram alcançadas através de dados levantados juntamente com a Defesa Civil de Santa Catarina nos Planos Regionais de Atendimento Emergencial (PRAES), para acidentes com produtos perigoso (PP) e pelo Batalhão de Policia Militar Rodoviária de Santa Catarina (BPMRv) através dos dados de acidente envolvendo PP. Após isto, foram cruzados os resultados chegando até a classe de risco de maior frequência nas estradas barriga verde. Como Santa Catarina possui regiões com peculiaridades diferentes, decidiu-se então dividir o Estado conforme as circunscrições dos BBMs, permitindo assim uma análise mais detalhada dessas regiões. Ao findar deste trabalho sugeriu-se que adicionassem ao Programa de Matéria/Plano de Unidade Didática as informações levantadas com este trabalho, que os levantamentos realizado quanto as classes de risco por batalhão fossem levadas em consideração pelos BBMs para que possuíssem ao menos as RPQ indicadas por este, além de instruir os bombeiros de como atuar na classe risco mais encontrada na região que ele trabalha e foi deixado como sugestão um estudo sobre a classe 3 (líquidos inflamáveis) por ser a de maior frequência em Santa Catarina.

Palavras-chave: Roupa de proteção química. Emergência com produtos perigosos. Equipamento de proteção individual. Produtos perigosos.

LISTA DE ILUSTRAÇÕES

Gráfico 1 - Faturamento líquido da indústria química brasileira - 2011	15
Gráfico 2 - Evolução do faturamento líquido	16
Quadro 1 - Classes de Risco	18
Quadro 2 - Significado das cores do fundo nos rótulos de risco	23
Figura 1- Rótulo de risco	24
Figura 2 - Painel de segurança	24
Quadro 3 - Significado do primeiro algarismo (risco principal do produto)	25
Quadro 4 - Significado do segundo e/ou terceiro algarismos	25
Figura 3- Diamante de risco	26
Figura 4 – Aeroportos em Santa Catarina	28
Gráfico 3 – Acidentes por atividades realizadas no ano 2011	30
Figura 5 – Nível "A"	34
Figura 6 - Nível "B"	34
Figura 7 - Nível "C"	35
Figura 8 – Nível "D"	35
Figura 9 - Material degradado	41
Figura 10 - Penetração de um produto em um material	42
Figura 11 - Aspectos da permeabilidade	42
Figura 12 - Tipos de costura	44
Quadro 5 – Substâncias consideras de baixa toxicidade	46
Quadro 6 – Exemplos de substâncias com média toxicidade	46
Quadro 7 - Exemplos de substâncias com alta toxicidade	47
Quadro 8 - Soluções para produtos desconhecidos	47
Quadro 9 - Soluções para produtos conhecidos	48
Quadro 10 - Relação material X solução	48
Quadro 11 - Vantagens e desvantagens dos níveis de proteção A,B e C	54
Quadro 12 - Quantidade de PP por classe de risco que circulam nas rodovias catarinense	55
Figura 13 – Circunscrição dos Batalhões de Bombeiro Militar de Santa Catarina	56
Gráfico 4 - Classes de risco encontradas na área do 1° BBM	57
Gráfico 5 - Classes de risco encontradas na área do 2° BBM	57
Gráfico 6 - Classes de risco encontradas na área do 3° BBM	58
Gráfico 7 - Classes de risco encontradas na área do 4°BBM	59

Gráfico 8 - Classes de risco encontradas na área do 5° BBM	60
Gráfico 9 - Classes de risco encontradas na área do 6° BBM	60
Gráfico 10 - Classes de risco encontradas na área do 7° BBM	61
Gráfico 11 - Classes de risco encontradas na área do 8° BBM	62
Gráfico 12 – Classes de risco encontradas na área do 9° BBM	62
Gráfico 13 - Classes de risco encontradas na área do 10° BBM	63
Gráfico 14 - Classes de risco encontrada na área do 13° BBM	64

LISTA DE SIGLAS

ANTT - Agência Nacional de Transporte Terrestre

ALL - América Latina Logística

BBM – Batalhão de Bombeiro Militar

BDPP/SC - Banco de Dados do Transporte Rodoviário de Produtos Perigosos de Santa Catarina

BPMRv -Batalhão de Polícia Militar Rodoviária

CETESB - Companhia de Tecnologia de Saneamento Ambiental

CBMSC - Corpo de Bombeiros Militar de Santa Catarina

EVA - Etileno Vinil-Acetato

EPI - Equipamentos de Proteção Individual

EPP - Emergência com Produtos Perigosos

FTC - Ferrovia Tereza Cristina

IDLH - Perigo imediato a vida ou a saúde

NFPA - National Fire Protection Association

NR-6 - Norma Regulamentadora numero 6

O2 - Oxigênio

ONU - Organização das Nações Unidas

PIB - Produto Interno Bruto

PP - Produtos Perigosos

PPM – Partes por Milhão

PRAES - Planos Regionais de Atendimento Emergencial

PRF – Polícia Rodoviária Federal

PROMA/PUD - Programa de Matéria/Plano de Unidade Didática

PVC - Cloreto de Polivinila

RPQ - Roupas de Proteção Química

RTPP - Regulamento do Transporte de Produtos Perigosos

TBG - Transportadora Brasileira Gasoduto Brasil-Bolívia S.A

UNEP - Programa das Nações Unidas para o Meio Ambiente

SUMÁRIO

1 INTRODUÇÃO	11
1.1 Problema	11
1.2 Objetivo	11
1.2.1 Objetivo Geral	11
1.2.2 Objetivos Específicos	12
1.3 Justificativa	12
1.4 Metodologia	13
1.5 Estrutura do trabalho	14
2 PRODUTOS PERIGOSOS	15
2.1 A importância da indústria química	15
2.2 Conceito de produtos perigosos	17
2.3 Classes de risco	18
2.3.1 Classe 1 - Explosivos	18
2.3.2 Classe 2 – Gases	19
2.3.3 Classe 3 – Líquidos Inflamáveis	20
2.3.4 Classe 4 – Sólidos Inflamáveis	20
2.3.5 Classe 5 - Oxidantes e Peróxidos Orgânicos	20
2.3.6 Classe 6 – Substâncias Tóxicas e Infectantes	21
2.3.7 Classe 7 – Substâncias Radioativas	22
2.3.8 Classe 8 – Substâncias Corrosivas	22
2.3.9 Classe 9 - Substâncias Perigosas diversas	22
2.4 Formas de identificação	23
2.4.1 Rótulo de risco	23
2.4.2 Painel de Segurança	24
2.4.3 Documentos da Carga	25
2.4.4 Diamante de Risco	26
2.5 Modais de transporte	26
2.6 Acidentes com produtos perigosos	29
2.7 Equipamento de proteção individual	31
3 ROUPAS DE PROTEÇÃO QUÍMICA	33
3.1 Classificação quanto ao nível de proteção	33

3.2 Classificação quanto ao estilo	36
3.3 Classificação quanto ao uso	37
3.4 Classificação quanto ao material de confecção	37
3.4.1 Materiais revestidos (elastômero)	37
3.4.2 Materiais Laminados (não elastômeros)	39
3.5 Requisitos de desempenho para roupas de proteção química	40
3.6 Tipos de costuras das roupas de proteção química	43
3.7 Descontaminação das roupas de proteção química	44
3.7.1 Métodos de descontaminação	45
3.7.2 Procedimentos de Descontaminação	45
3.7.3 Soluções para descontaminação	47
4 METODOLOGIA	49
5 SELEÇÃO ADEQUADA DA ROUPA DE PROTEÇÃO QUÍMICA	51
5.1 Seleção do nível de proteção pelo tipo de ocorrência	51
5.2 Seleção do nível de proteção em relação aos vapores e gases	53
5.3 Vantagens e desvantagens dos níveis de proteção A,B e C	53
5.4 Seleção da roupa de proteção química pela classe de risco	54
5.5 Classe de risco mais encontrada por Batalhão de Bombeiro Militar	56
5.5.1 Classes de risco mais encontradas no 1° BBM	57
5.5.2 Classes de risco mais encontradas no 2° BBM	57
5.5.3 Classes de risco mais encontradas no 3° BBM	58
5.5.4 Classes de risco mais encontradas no 4° BBM	58
5.5.5 Classes de risco mais encontradas no 5° BBM	59
5.5.6 Classes de risco mais encontradas no 6° BBM	60
5.5.7 Classes de risco mais encontradas no 7° BBM	61
5.5.8 Classes de risco mais encontradas no 8° BBM	61
5.5.9 Classes de risco mais encontradas no 9° BBM	62
5.5.10 Classes de risco mais encontradas no 10° BBM	63
5.5.11 Classes de risco mais encontradas no 12° BBM	63
3.3.11 Classes de fisco mais encondadas no 12 DDM	
5.5.12 Classes de risco mais encontradas no 13° BBM	64
5.5.12 Classes de risco mais encontradas no 13° BBM	65
5.5.12 Classes de risco mais encontradas no 13° BBM	65
5.5.12 Classes de risco mais encontradas no 13° BBM	65 67

ANEXO A – Acidentes registrados envolvendo produtos perigosos nas rodovi	as federais
de SC do ano de 2004 até 2006	72
${f ANEXO~B-V}$ inte produtos que mais são transportados nas rodovias federai	s de SC77
ANEXO C - Acidentes registrados envolvendo produtos perigosos nas rodovi	as
estaduais de SC do ano de 2001 até 2011	79
ANEXO D – Portaria N° 32/CBMSC/2011	84

1 INTRODUÇÃO

Entre as diversas atividades desenvolvidas pelo Corpo de Bombeiros Militar de Santa Catarina (CBMSC) encontra-se a atuação em emergências com produtos perigosos. Para que os militares atuem nessas ocorrências, faz-se necessário o uso de alguns equipamentos de proteção individual (EPI), entre estes, destaca-se as roupas de proteção química (RPQ).

Durante as aulas da disciplina de operações com produtos perigosos (PP), no Curso de Formação de Oficiais Bombeiro Militar, verificou-se que pouco se comentou sobre as roupas de proteção química.

1.1 Problema

Ao se deparar com uma emergência envolvendo produtos perigosos o bombeiro saberá selecionar a roupa de proteção adequada a ser usada? Este trabalho pretende estudar quais são as classes de risco que mais circulam pelas rodovias Santa Catarina, e em cima disto oferecer informações que instruam o bombeiro na hora de selecionar a roupa de proteção química correta para a situação deparada e ainda auxiliar na aquisição adequada destas pelo CBMSC, bem como na distribuição desses equipamentos no território catarinense.

1.2 Objetivo

1.2.1 Objetivo Geral

Partindo-se da premissa de que o CBMSC pode ser considerado uma organização pública da administração direta com competência constitucional para responder emergências com PP, os objetivos principais deste trabalho são o de estudar as diversas roupas de proteção química usadas na proteção pessoal dos Bombeiros Militares que atuam em EPP e oferecer informações que facilitem a identificação do traje mais adequado e seguro para responder as emergências em função dos riscos, resistências, exposição, facilidade de descontaminação e custos.

1.2.2 Objetivos Específicos

Os objetivos específicos são os seguintes:

- a) Estudar as diversas roupas de proteção química, indicando as suas particularidades;
- b) Diferenciar as roupas de proteção química quanto aos materiais que são confeccionadas e nível de proteção;
- c) Demonstrar os requisitos mínimos que uma roupa de proteção química deve possuir para garantir a segurança de seu usuário
 - d) Verificar a forma correta de descontaminação das roupas de proteção química;
- e) Trazer informações que auxiliem na hora de selecionar corretamente a roupa de proteção química a ser usada em uma emergência com produtos perigosos;
 - f) Identificar quais são as classes de risco mais encontrados nas rodovias de Santa Catarina;
- g) Apresentar sugestão para quais equipamentos de proteção individual indicado para cada região com base em estatísticas de acidentes levantados nesta pesquisa.

1.3 Justificativa

O Corpo de Bombeiros Militar de Santa Catarina, procura especializar-se no atendimento de EPP, pois possuem em sua circunscrição diversas rodovias, onde cotidianamente ocorre o transporte destes produtos e ainda o Estado catarinense possui um expressivo e diversificado parque industrial, em todas as regiões. Portanto, diariamente existe o risco potencial de emergências envolvendo produtos perigosos. Conforme dados estáticos levantados junto a Pró-Química ocorreram no Brasil em 2011, 762 (setecentos e sessenta e duas) emergências e incidentes envolvendo PP, dessas 473 (quatrocentos e setenta e três), ocorreram nas rodovias do país. (ASSOCIAÇÃO BRASILEIRA DAS INDÚSTRIAS QUÍMICAS, 2012a)

Tendo em vista a visão da corporação em primar pela segurança de seus colaboradores e sua obrigatoriedade legal, nada mais importante do que instruí-los quanto aos cuidados necessários quando no atendimento de emergências deste tipo, da importância do uso de EPI.

Segundo Camilo (2009, p.66) "No atendimento a emergências com produtos perigosos o EPI a ser utilizado pela equipe de emergência deverá corresponder ao nível de proteção exigido pelo risco apresentado pelo contaminante envolvido."

Entre esses equipamentos, enquadra-se a roupa de proteção química, porém se esta não for adequada ao tipo de produto e a situação em si, ela perde toda a sua efetividade. Neste sentido, não basta apenas à corporação instruir, tem que fornecer o material apropriado para a devida proteção de seus integrantes.

As roupas de proteção química devem ser utilizadas em circunstâncias onde há a presença de produto perigoso ou exista a real possibilidade de liberação de tal material, e, diga-se de passagem, nem todos os materiais perigosos classificados pela ONU necessitam de proteção de EPI químico. Para Haddad e Lainha (2002), as roupas de proteção química têm como objetivo proteger a pele contra a exposição, e é fundamental que esta possua uma resistência maior aos efeitos dos produtos químicos.

Um estudo voltado para a realidade catarinense, buscando definir os EPIs para produtos perigosos, definir quando usar e qual roupa usar, vai, em tese, melhorar o desempenho dos profissionais, diminuindo drasticamente o risco de acidentes de trabalhos envolvendo estes, e também, se prolongará significativamente o tempo de uso desses EPIs, que via de regra, são caros.

O uso exacerbado das roupas de proteção será também um fator importante desta pesquisa, pois o custo deste equipamento, como já foi citado anteriormente, é alto não podendo ser utilizado de qualquer forma e situações, existem casos em que uma modalidade de roupa com um custo menor traz um excelente nível de segurança ao combatente e que não se faz necessário o uso de uma roupa de proteção mais cara, evitando assim o desgaste desnecessário desta.

Por final, este trabalho também pretende fazer um estudo sobre qual equipamento é mais indicado para aquisição dos Batalhões de Bombeiro Militar (BBM) de acordo com a realidade encontrada na região, levando em consideração os PP que circulam nas rodovias de Santa Catarina.

1.4 Metodologia

O desenvolvimento deste trabalho empregará o método de abordagem hipotéticodedutivo e terá uma natureza exploratória, utilizando a documentação direta como técnica de pesquisa. Os dados serão levantados através de pesquisa bibliográficas, que "é desenvolvida com base em material já elaborado, constituí principalmente de livros e artigos científicos" (GIL 2009, p. 44). Serão utilizados documentos primários e secundários.

1.5 Estrutura do trabalho

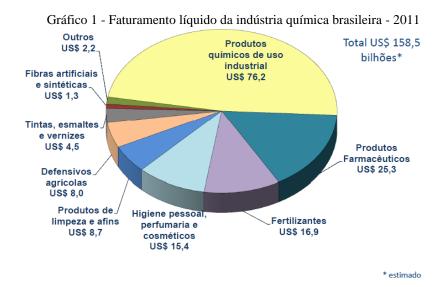
Este trabalho de pesquisa será dividido em cinco capítulos sendo que o primeiro foi a introdução onde se tratou do problema que envolve a pesquisa, o objetivo geral e específico, a justificativa da importância deste trabalho, os procedimentos metodológicos e por fim esta sendo apresentada a estrutura que terá o trabalho de pesquisa.

O segundo capítulo apresentará sobre produtos perigosos, onde será abordado sobre a importância da indústria química, os principais conceitos de PP, as classes de riscos, as formas de identificação, se fará um breve comentário sobre os modais de transporte e se falará sobre os acidentes envolvendo PP e por fim os equipamentos de proteção individual utilizados em EPP.

Já no terceiro capítulo o foco será especificamente sobre as roupa de proteção química, apresentar-se-á informações como, a classificação quanto ao uso, material de confecção e estilo, os requisitos de desempenho exigidos para uma RPQ, tipos de costuras e forma de descontaminação da roupa de proteção química.

Caberá ao quarto capítulo, a metodologia da pesquisa, onde irá mostrar as formas que foram levantado os dados, método de abordagem e técnica de pesquisa utilizados neste trabalho. O quinto e derradeiro capítulo, apresentará as formas corretas de seleção de uma roupa de proteção química além das analises alcançadas com os dados obtidos.

No findar desta pesquisa serão apontadas as conclusões alcançadas além de algumas sugestões.


2 PRODUTOS PERIGOSOS

As substâncias químicas estão se tornando cada vez mais importante para a economia mundial. Existem diversas indústrias que fabricam este tipo de produto e outras mais que dependem deles como matéria prima. Muitas destas substâncias são consideras prejudiciais à saúde humana ou ao meio ambiente. Com isso são considerados produtos perigosos, estes são divididos em classes e possuem algumas formas de identificação quando transportados ou armazenados, como será apresentado neste capítulo.

2.1 A importância da indústria química

A indústria química brasileira tem uma grande importância na economia nacional e mundial, pois muitos dos produtos aqui produzidos são exportados e este setor movimenta bilhões de dólares.

Segundo estimativas da Associação Brasileira da Indústria Química (2011), o faturamento líquido chegou aos US\$ 158,5 bilhões (cento e cinqüenta e oito vírgula cinco bilhões de dólares) em 2011 e teve participação de 2,4% (dois vírgula quatro por cento) no PIB (produto interno bruto) brasileiro no ano de 2010. O setor é o 4º (quarto) em participação no PIB industrial. E a indústria química brasileira é a sétima em faturamento no mundo. O gráfico 1 demonstra como esta distribuído este faturamento líquido.

Fonte: Associação Brasileira da Indústria Química (2011).

Este segmento industrial está em uma crescente ascensão, fato facilmente percebido com o gráfico 2:

Gráfico 2 - Evolução do faturamento líquido

Fonte: Associação Brasileira da Indústria Química (2010).

Percebe-se um aumento de aproximadamente U\$ 30 bilhões (trinta bilhões de dólares) do no de 2009 para o de 2010. Fica evidente que em 2009 o faturamento teve um declínio devido à crise mundial, que diminuiu a demanda mundial e consequentemente os preços.

O déficit de importação também aumentou no ano de 2012.

O déficit da balança comercial de produtos químicos chegou a US\$ 7,5 bilhões nos quatro primeiros meses deste ano, o que representa um aumento de 5,1% em relação a igual período do ano anterior. No período entre janeiro a abril, o Brasil importou US\$ 12,4 bilhões em produtos químicos. Já as exportações foram de US\$ 4,9 bilhões. No acumulado dos últimos 12 meses, o déficit é de aproximadamente US\$ 26,9 bilhões. (ASSOCIAÇÃO BRASILEIRA DE QUÍMICA, 2012b, p.1)

Através destes números, é possível ter uma base da importância da indústria química na vida de todos os cidadãos, até mesmo porque as substâncias químicas estão presentes em seu cotidiano, pois até mesmo no tratamento da água potável, estas são encontradas.

Estas substâncias químicas muitas vezes são consideradas como produtos perigosos, porém não é assim tão simples determinar que tal substância é ou não um produto perigoso.

2.2 Conceito de produtos perigosos

Para saber se uma substância química é ou não um produto perigoso, é necessário conhecer o conceito deste, para que se possa definir se determinada substância se enquadra neste e assim tomar as devidas providências.

O termo "produto perigoso", originário do inglês d*angerous goods*, possui um significado bastante amplo. A princípio, poderíamos estar falando de qualquer substância química, o que também não esclarece a questão, pois tudo na natureza é química, até a água potável estaria incluída neste conceito. Seriam somente as substâncias consideradas nocivas aos seres humanos? E quanto aos produtos impactantes ao meio ambiente? Afinal, quais os aspectos que nos levam a definir um produto como perigoso? (ARAÚJO, 2005, p. 17).

Com isso um dos conceitos de produto perigoso é "toda substância de natureza química, radioativa ou biológica que pode estar nos estados: sólido, líquido ou gasoso e pode afetar de forma nociva, direta ou indiretamente, o patrimônio, os seres vivos ou o meio ambiente." (CORPO DE BOMBEIROS MILITAR DO ESTADO DO RIO DE JANEIRO, 2004, p.5)

Para Oliveira (2000, p.26) "é toda substância ou elemento que por sua característica de volume e periculosidade, representa um risco além do normal à saúde, à propriedade e ao meio ambiente durante sua extração, fabricação, armazenamento, transporte ou uso."

Em uma definição mais abrangente produtos perigosos são aqueles que por suas características físico-químicas, podem levar perigo ao homem, ao meio ambiente e ao patrimônio público ou privado, principalmente, se tratados, embalados ou transportados de forma errada ou ainda, manipulados por pessoas despreparadas. (SILVEIRA, 2009)

Não se pode confundir ainda produto perigoso com carga perigosa "carga perigosa é o mau acondicionamento de uma carga, que contenha produto perigoso ou não, para o transporte, fazendo com que ela apresente maiores riscos." (CAMILO, 2009, p.42)

Os produtos perigosos possuem diferentes riscos e características que por isso, a Organização das Nações Unidas (ONU) os separaram em nove classes considerando a similaridade entre eles.

2.3 Classes de risco

Como mencionado anteriormente, os produtos perigosos foram divididos em nove classes de risco, abrangendo mais de três mil produtos. Algumas destas estão subdividas em subclasses. No Brasil esta separação foi regulamentada pela Resolução 420/2004 da Agência Nacional de Transporte Terrestre (ANTT).

A classificação de um produto perigoso para o transporte deve ser realizada pelo seu fabricante ou expedidor orientado pelo fabricante, baseando-se nas características físico-químicas do produto, alocando-o numa das classes ou subclasses descritas na Resolução 420/2004 da ANTT. (BRASIL, 2004)

No quadro 1 serão apresentadas as nove classes de risco:

Quadro 1 - Classes de Risco

Classe 1	Explosivos
Classe 2	Gases
Classe 3	Líquidos Inflamáveis
Classe 4	Sólidos Inflamáveis
Classe 5	Oxidantes e Peróxidos Orgânicos
Classe 6	Substâncias Tóxicas e Infectantes
Classe 7	Substâncias Radioativas
Classe 8	Substâncias Corrosivas
Classe 9	Substâncias Perigosas diversas

Fonte: Brasil (2004).

2.3.1 Classe 1 - Explosivos

São as substâncias sólidas ou líquidas (ou mistura de substâncias) com a capacidade de por si mesma produzir gás, por reação química, a temperatura, pressão e velocidade tais que provoque danos à sua volta. E ainda, mesmo que não libere gases as substâncias pirotécnicas. (HADDAD, 2002)

Entende-se como substância pirotécnica aquelas que, puras ou misturadas com outras, são concebidas para produzirem efeitos de luz, som, calor, fumaça ou gás, ou até mesmo uma combinação destes efeitos como resultado de reações químicas exotérmicas auto-

sustentáveis e não-detonantes. E ainda fica proibido transportar explosivos muito sensíveis que estejam sujeitos à reação espontânea. (BRASIL, 2004)

A classe de risco dos explosivos encontra-se dividida em seis subclasses, são elas:

- a) Subclasse 1.1 substâncias e artefatos com risco de explosão em massa;
- b) Subclasse 1.2 substâncias e artefatos com risco de projeção;
- c) Subclasse 1.3 substâncias e artefatos com risco predominante de fogo;
- d) Subclasse 1.4 substâncias e artefatos que não apresentam risco significativo;
- e) Subclasse 1.5 substâncias pouco sensíveis;
- f) Subclasse 1.6 substâncias extremamente insensíveis.

Alguns exemplos desses materiais são a pólvora negra (explosivo baixo), nitrato de amônio (explosivo alto) e azida de chumbo (explosivo de impacto).

2.3.2 Classe 2 – Gases

Segundo a Resolução 420/2004 da Agência Nacional de Transporte Terrestre (BRASIL, 2004) uma substância é considera um gás quando a 50°C (cinquenta graus Celsius) possui uma pressão de vapor superior a 300 kPa (trezentos quilo Pascal) e quando se encontra em uma temperatura de 20°C (vinte graus Celsius) seu estado físico é completamente gasoso e sua pressão normal é de 101,3 kPa (cento e um vírgula três quilo Pascal).

Não se pode confundir gás com vapor, pois vapor é "a fase gasosa de uma substância que é líquida ou sólida a 25°C e 760mmHg." (ARAÚJO, 2005, p. 114)

Os gases possuem forma e volume variáveis, apresentam baixa densidade, se expandem e contraem muito facilmente quando alteradas a temperatura e/ou pressão. Independente do risco do produto, o fato de ser uma substância gasosa já é um motivo de grande preocupação, pois em um caso de vazamento os gases tendem a preencher todo a ambiente, e ainda existem aqueles gases que não possuem cheiro e cor característicos dificultando a percepção destes no ambiente. Estes produtos apresentam outros riscos além dos referentes ao estado físico, são eles toxicidade, poder de oxidação, corrosividade e inflamabilidade, entre outros. (HADDAD, 2002)

Esta classe também está dividida em subclasses, são apenas três:

- a) Subclasse 2.1 gases inflamáveis;
- b) Subclasse 2.2 gases comprimidos não tóxicos e não inflamáveis;
- c) Subclasse 2.3 gases tóxicos por inalação.

Nitrogênio, metano, gás liquefeito de petróleo, acetileno, amônia e sulfeto de hidrogênio são algumas das substâncias que se encaixam nesta classe de risco.

2.3.3 Classe 3 – Líquidos Inflamáveis

São líquidos, misturas de líquidos ou líquidos que contenham sólidos em solução ou suspensão que liberem vapor inflamável a temperaturas de até 60,5°C (sessenta vírgula cinco graus Celsius), em ensaio de vaso fechado, ou até 65,6°C (sessenta e cinco vírgula seis graus Celsius), em ensaio de vaso aberto, normalmente referido como ponto de fulgor. (BRASIL, 2004)

Entende-se como ponto de fulgor "a menor temperatura na qual uma substância libera vapores em quantidades suficientes para que a mistura de vapor e ar logo acima de sua superfície propague uma chama, a partir do contato com uma fonte de ignição." (HADDAD, 2002) As substâncias que se enquadram nesta classe são por exemplo tiofeno, derivados de petróleo, resina de dissulfeto de carbono.

2.3.4 Classe 4 – Sólidos Inflamáveis

De acordo com Muller (2008, p. 39) "Esta classe abrange todas as substâncias sólidas que podem se inflamar na presença de uma fonte de ignição, em contato com o ar ou com a água, e que não estão classificadas como explosivos."

Ela encontra-se subdividia em três subclasses:

Subclasse 4.1 - Sólidos Inflamáveis: podem se inflamar além do contato com chamas vivas, quando expostos ao calor, choque ou atrito.

Subclasse 4.2 - Combustão Espontânea: podem se inflamar em contato com o ar, mesmo sem a presença de uma fonte de ignição. Eles são transportados, na sua maioria, em recipientes com atmosferas inertes ou submersos em querosene ou água. Subclasse 4.3 - Perigoso Quando Molhado: em interação com a água podem produzir gases inflamáveis em quantidades perigosas ou tornar-se espontaneamente inflamáveis. (HADDAD, 2002)

Exemplos desta classe de risco são as azida de bário, magnésio, titânio, alumínio, zinco, lítio, sódio e potássio.

2.3.5 Classe 5 - Oxidantes e Peróxidos Orgânicos

Substâncias oxidantes não são combustíveis, porém com a liberação do oxigênio, podem em geral causar a combustão de outros materiais ou contribuir para isso. Já os

peróxidos orgânicos são agentes de alto poder oxidante, produzem, em sua maioria, irritação nos olhos, pele, mucosa e garganta. (OLIVEIRA, 2000)

Esta classe abrange basicamente duas subclasses, são elas:

- a) Subclasse 5.1 Substâncias oxidantes: não são necessariamente combustíveis, mas podem, em geral por evaporação de oxigênio, contribuir ou causar a combustão de outros materiais. (BRASIL, 2004)
- b) Subclasse 5.2 Peróxidos orgânicos: substâncias orgânicas que possuem a estrutura bivalente --O--O-- e derivam do peróxido de hidrogênio, em os átomos de hidrogênio, um ou ambos, foram substituídos por radicais orgânicos. São produtos termicamente instáveis que podem sofrer decomposição exotérmica auto-acelerável. (BRASIL, 2004)

O peróxido de hidrogênio, nitrato de amônio, clorito de sódio e o nitrato de sódio são exemplos de produtos oxidantes. Já os peróxidos orgânicos variam quanto ao tipo podendo ser A,B,C,D,E e F.

2.3.6 Classe 6 – Substâncias Tóxicas e Infectantes

Venenos ou toxinas são substâncias causadoras ou ao menos que contribuem para causar doenças ou mortes, quando inseridas em um organismo que apresenta boa saúde. (ARAÚJO, 2005)

Esta classe também se encontra dividida em duas subclasses:

a) Subclasse 6.1 Substâncias Tóxicas

São as que levam a morte ou causam danos à saúde humana se ingeridas, inaladas ou por contato com a pele, mesmo em pequenas quantidades. A forma mais rápida dela entrar no corpo humano é pela inalação. (HADDAD, 2002)

b) Subclasse 6.2 Substâncias Infectantes

São aquelas que contenham patógenos ou se tenha alguma suspeita razoável. Patógenos são microorganismos ou microorganismos recombinantes que possam ou estejam sob suspeita razoável de poderem causar doenças infecciosas em seres humanos ou em animais. (BRASIL, 2004)

Podem ser citados como exemplos de substâncias tóxicas o percloroetileno, ferropentacarbonila, ácido carbólico e o aletrin. Já para exemplificar as substâncias infectantes tem-se os agentes etiológicos e as amostras clínicas.

2.3.7 Classe 7 – Substâncias Radioativas

Para Muller (2008, p.41) substâncias radioativas "são as substâncias capazes de emitir radiação ionizante. Esta é produzida por partículas ou ondas eletromagnéticas dotadas de energia suficiente para ionizar a matéria e causar efeitos deletérios ao organismo humano."

O hexafluoreto de urânio, nitrato de tório e embalagens de materiais radioativos são exemplos de produtos perigosos desta classe de risco.

2.3.8 Classe 8 – Substâncias Corrosivas

As substâncias classificadas como corrosivas causam severos danos em contato com o tecido vivo ou em caso de vazamento danificam e/ou destroem outras cargas e até mesmo o próprio veículo apresentando outros riscos tudo isso por ação química. (BRASIL, 2004)

Os principais grupos de substâncias que possuem essas propriedades são basicamente dois, ácidos e bases (álcalis). Os ácidos são substâncias que em contato com a água liberam íons H⁺, gerando alterações de pH para a faixa de zero a sete. Quanto as bases são substâncias que em contato com a água, liberam íons OH⁻, provocando alterações de pH para a faixa de sete a quatorze. (MULLER, 2008)

São exemplos de produtos desta classe o ácido sulfúrico, ácido nítrico, ácido maleico, ácido fluorídrico, ácido fosfórico, hidróxido de sódio, hidróxido de potássio e anidrido acético.

2.3.9 Classe 9 - Substâncias Perigosas diversas

Todos os produtos que apresentam risco e não estão enquadrados nas classes supracitadas, encontram-se nesta classe abrangente.

Tem-se como exemplo destes produtos o ditionito de zinco, nitrato de amônio, bateria de lítio e o amianto.

2.4 Formas de identificação

Em uma emergência envolvendo produtos perigosos, é de fundamental importância conseguir identificar qual o produto que está envolvido. Para isso são utilizadas algumas formas de identificação.

O Brasil adota a classificação aceita internacionalmente pelos países integrantes da UNEP (Programa das Nações Unidas para o Meio Ambiente), regulamentada pelo Decreto n° 96.044/1988 (Regulamento do Transporte de Produtos Perigosos – RTPP), cujas instruções complementares foram aprovadas pela Resolução da Agência Nacional de Transportes Terrestre (ANTT) n° 420/2004 e alterada pela Resolução n° 701/2004 e Resolução n° 1644/2006. (BRASIL, 2008, p.4)

Esta identificação se dá de duas formas, pelo sistema de reconhecimento de riscos e pela identificação do produto. O primeiro ocorre através dos rótulos de risco já o segundo com a visualização do painel de segurança e observando os documentos da carga, os quais serão apresentados a seguir. Porém existe uma terceira forma, que é utilizada em instalações fixas, conhecida como Diamante de Risco (também conhecido como Diamante de Homel).

2.4.1 Rótulo de risco

É uma identificação visual da classe ou subclasse de risco do produto, que tem como forma uma placa losangular, com símbolos, números, cores e/ou expressões, as quais são fixadas nas laterais e na traseira do veículo. Cada cor do fundo do rótulo representa uma classe, como se pode observar no quadro 2.

Ouadro 2 - Significado das cores do fundo nos rótulos de risco

COR DO FUNDO	CLASSE DE RISCO
Vermelho	Inflamável/Combustível
Verde	Gás não inflamável
Laranja	Explosivos
Amarelo	Oxidantes/oxigênio
Preto/Branco	Corrosivos
Amarelo/Branco	Radioativos
Vermelho/Branco listrado	Sólido inflamável;
Azul	Perigoso quando molhado
Branco	Veneno

Fonte: Oliveira (2000, p. 33).

A figura 1 representa o rótulo de risco de um produto. Percebe-se que ele possui um símbolo em forma de chama, uma cor que é vermelha, o número 3 (três) e uma expressão que representam sua classe de risco, neste caso o rótulo de risco refere-se a um produto que é um líquido inflamável.

Figura 1- Rótulo de risco

Fonte: Brasil (2004).

2.4.2 Painel de Segurança

É um retângulo de cor laranja com duas numerações na cor preta, na parte superior o número de identificação do risco do produto químico e na parte inferior o número da ONU, que identifica qual é o produto transportado, como pode ser observado na figura 2. O número da ONU é composto por quatro algarismos, e segue a classificação internacional. Já o número de risco é representado por, no máximo, três e por, no mínimo, dois algarismos. (CAMILO, 2009)

Proibição de água

X226

Número da ONU

1005

Figura 2 - Painel de segurança

Fonte: Brasil (2008, p. 36).

Se antes do número de risco vier à letra "X", significa que não se pode usar água. O primeiro algarismo indica o risco principal já o segundo e o terceiro os secundários, conforme a o quadro 3 e quadro 4 respectivamente.

Quadro 3 - Significado do primeiro algarismo (risco principal do produto)

ALGARISMO	SIGNIFICADO DO ALGARISMO			
2	Gás			
3	Líquido inflamável			
4	Sólido inflamável			
5	Substância oxidante ou peróxido orgânico			
6	Substância tóxica			
7	Substância radioativa			
8	Substância corrosiva			

Fonte: Karsten (2002, p. 7).

Quadro 4 - Significado do segundo e/ou terceiro algarismos

ALGARISMO	SIGNIFICADO DO ALGARISMO
0	Ausência de risco subsidiário
1	Explosivo
2	Emana gás
3	Inflamável
4	Fundido
5	Oxidante
6	Tóxico
7	Radioativo
8	Corrosivo
9	Perigo de reação violenta

Fonte: Karsten (2002, p.7).

Caso não tenha risco subsidiário deve ser colocado o "zero" como segundo algarismo, no caso de gás, nem sempre o primeiro algarismo significa o risco principal.A repetição de dos algarismos significa uma intensificação do risco.

Existe a possibilidade de a carga do veículo ser fragmentada, ou seja, existir em uma mesma carga, diferentes produtos, com números da ONU diferenciados, neste caso no painel de risco não deverá aparecer nenhum número. O que significará que a carga é mista. (KARSTEN, 2002)

2.4.3 Documentos da Carga

O transportador é obrigado a estar sempre portando a nota fiscal do produto assim como o envelope de transporte de carga. Na nota fiscal é acrescido o número da ONU e o número de risco. (BRASIL, 2008)

Ele ainda tem que portar certificado de capacitação para o transporte de produtos perigosos a granel do veículo e do equipamento e ficha de emergência.

2.4.4 Diamante de Risco

Os sistemas apresentados anteriormente são os utilizados pela ONU, porém, existe outro símbolo, encontrado em indústrias ou outra instalação fixa, nas embalagens de alguns produtos importados dos Estados Unidos, conhecidos como Diamante de Risco.

O Diamante de Risco ou diamante de Hommel, como também conhecido, foi desenvolvido pela Associação Nacional de Proteção Contra Incêndios dos Estados Unidos da América (National Fire Protection Association - "NFPA" 704 M), para suprir as necessidade de uma rápida identificação do produto quando encontrado em uma local de armazenagem e recipientes pequenos. Não é oficialmente utilizado no Brasil, mas como dito acima, é constantemente encontrado em embalagens de produtos e amplamente usado nas empresas que utilizam produtos perigosos. (CORPO DE BOMBEIROS MILITAR DO ESTADO DO RIO DE JANEIRO, 2004).

Trata-se de diagrama o qual dá uma noção geral das ameaças inerentes a cada produto químico, além de uma indicação do grau de severidade destas. Indica as ameaças em três categorias: saúde, inflamabilidade e reatividade. E o grau de severidade de cada umas das categorias citadas em cinco níveis numéricos que vão do 4 (quatro) que é o mais severo até o 0 (zero) que é o menos severo. (BRASIL, 2008) Esta forma de identificação pode ser visto na figura 3.

O diamante possui as seguintes
áreas de identificação:

Vermelho: Risco de inflamabilidade.
Azul: Riscos à saúde.
Amarelo: Riscos de reatividade.
Branco: Riscos especiais
W: Reage com água.
OW: Corrosivo.
OX: Oxidante
: Radioatividade

Figura 3- Diamante de risco

Fonte: Brasil (2008, p. 28).

2.5 Modais de transporte

Os produtos perigosos no Brasil são movimentados em todos os modais disponíveis seja ferroviário, rodoviário, aeroviário, hidroviário ou até mesmo dutoviário.

a) Modal Ferroviário

Este modal é utilizado principalmente no deslocamento de grandes tonelagens de produtos homogêneos, como exemplo os minérios, ao longo de distâncias relativamente longas. O transporte ferroviário apresenta altos custos fixos em equipamentos, terminais e vias férreas entre outros, porém, demonstra um custo variável baixo. Apesar do custo do modal ferroviário ser menor do que o rodoviário, este ainda não é amplamente utilizado no Brasil. Isto se deve a problemas de infra-estrutura e a falta de investimentos nas ferrovias. (FERREIRA e RIBEIRO, 2012)

Em Santa Catarina são 1.365 km (mil trezentos e sessenta e cinco quilômetros) de estradas de ferro, em bitola de 1 (um) metro. Estes estão divididos por duas concessionárias a América Latina Logística - ALL com 1.201 km (mil duzentos e um quilômetro) e a Ferrovia Tereza Cristina – FTC com 164 km (cento e sessenta e quatro quilômetros). Apenas 581 km (quinhentos e oitenta e um quilômetros) da concessionária ALL estão em operação sendo utilizados nos transportes de grãos, madeira e carga geral. FTC localiza-se no sul do Estado e é especializada no transporte de carvão. (SANTA CATARINA, 2012a)

b) Modal Rodoviário

É o mais expressivo no transporte de cargas no Brasil, alcança quase que todos os pontos do território nacional, destina-se principalmente ao transporte de curtas distâncias de produtos acabados e semi-acabados. Via de regra, o custo do frete é mais elevado do que os modais ferroviário e hidroviário, portanto sendo recomendado para mercadorias de alto valor ou perecíveis. (FERREIRA e RIBEIRO, 2012)

O transporte de produtos perigosos neste modal pode ser a granel ou fracionado. Entende-se de modo geral que o transporte a granel caracteriza-se por armazenar grandes volumes em um só recipiente, possuindo geralmente um único sistema de carregamento e descarregamento. Já o fracionado armazena pequenos e médios volumes em diversos recipientes. (ARAÚJO, 2005)

Em 2011 o Brasil contava com cerca de 1.581.104 km (um milhão, quinhentos e oitenta e um mil, cento e quatro quilômetros) de rodovias, destes apenas 213.909 km (duzentos e treze mil, novecentos e nove quilômetros) são pavimentadas, o que representa 13,5% (treze vírgula cinco) da malha. (BRASIL, 2011)

Já em se tratando de Santa Catarina, não se difere da realidade da federação.

O sistema rodoviário de Santa Catarina totaliza 62.727 km de extensão. Entretanto, apenas 6.777 km correspondem a rodovias federais e estaduais pavimentadas e apresenta um traçado que favorece a integração entre as regiões catarinenses. O modal rodoviário é o principal meio de transporte dessa Unidade da Federação, sendo essencial para a movimentação de passageiros e o escoamento dos produtos e safras agrícolas para importação e exportação. (BRASIL, 2011)

c) Modal Aeroviário

O transporte aéreo é realizada por meio de aviões que necessitam de aeroportos para pouso, decolagem, carregamento e descarga de produtos. Suas principais características são a rapidez no deslocamento da carga e o custos elevados, sendo considerado o modal de maior custo. No custo estão agregados os gastos com aeronaves, combustível, manutenção das aeronaves e a infraestrutura aeroportuária.(CORPO DE BOMBEIROS MILITAR DE SANTA CATARINA, 2012a)

Em Santa Catarina o sistema aeroviário possui uma rede de 18 (dezoito) aeroportos públicos distribuídos por todas as regiões do Estado. Quatro de responsabilidade da Infraero, os demais são administrados pelos municípios por meio de convênio com o Governo do Estado. (SANTA CATARINA, 2012) A distribuição desses aeroportos pode ser visto na figura 4.

Fonte: Santa Catarina, (2012).

d) Modal Hidroviário

Este modal é utilizado para o transporte de granéis líquidos, produtos químicos, areia, carvão, cereais e bens de alto valor em contêineres. Pode ser dividir em três formas de navegação: a cabotagem (navegação entre portos ou pontos do território brasileiro, utilizando a via marítima ou entre esta e as vias navegáveis interiores); a navegação interior (realizada em hidrovias interiores, em percurso nacional ou internacional) e a navegação de longo curso (portos brasileiros e estrangeiros). É o modal com mais baixo custo, tem a vantagem ainda de transportar mercadorias volumosas e pesadas. (FERREIRA; RIBEIRO, 2012)

O Estado catarinense possui quatro portos estrategicamente distribuídos pelos 500 km (quinhentos quilômetros) da costa catarinense fazem. Cada um com características físicas e geográficas exclusivas, assim como concessões diferenciadas. São eles o Porto de São Francisco do Sul, de Itajaí, de Imbituba e o de Laguna. (SANTA CATARINA, 2012b)

e) Modal Dutoviário

O transporte dutoviário utiliza um sistema de dutos (tubos ou cilindros previamente preparados para determinado tipo de transporte), formando uma linha chamada de dutovia ou via composta por dutos onde o produto é movimentado de um lugar para outro. Este modal vem se apresentando como uma das formas mais econômicas de transporte para grandes volumes principalmente de petróleo, gás natural e derivados. (GASPARINI, 2006)

Em Santa Catarina, o maior volume de dutovias esta sob responsabilidade da Transportadora Brasileira Gasoduto Brasil-Bolívia S.A (TBG), que abastece o Estado com gás natural.

2.6 Acidentes com produtos perigosos

Entende-se acidente com produtos perigosos como sendo "todo evento inesperado que produz como resultado lesões, perdas de propriedades ou interrupção de serviços e atividades. (OLIVEIRA, 2000, p.26)

Como pode ser observado em informações levantadas junto ao Pró-Química – Associação Brasileira de Química (2012a), o modal rodoviário é o responsável por 62,07 % (sessenta e dois vírgula zero sete por cento) das emergências e incidentes atendidos pela associação supra citada seguido pela modalidade fixo com 30,57 % (trinta vírgula cinquenta e sete por cento) e o modal dutoviário não apresentou nenhum atendimento por ela, conforme pode ser verificado na tabela 1 abaixo:

Tabela 1 – Emergências e incidentes por modais de transporte em 2011

Modal	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	ACUM
Rodoviário	25	32	54	27	41	41	53	39	49	37	50	25	473
Ferroviário	1	-	4	4	1	1	1	3	2	1	4	3	25
Aéreo	-	-	-	-	-	2	-	-	-	-	2	-	4
Marítimo	1	-	2	1	3	7	-	-	4	2	4	3	27
Fixo	13	14	18	21	21	12	22	26	18	24	21	22	233
Totais	41	46	78	53	66	63	76	68	73	64	81	53	762

Fonte: Associação Brasileira de Química (2012a).

Outra fonte de pesquisa muito bem conceituada é a Companhia de Tecnologia de Saneamento Ambiental (CETESB), ligada à Secretaria do Meio Ambiente do governo de São Paulo, onde os dados apurados junto a esta companhia vêm a corroborar com os já apresentados, como pode ser visto no gráfico 3, porém estes estão exclusivamente relacionados ao Estado de São Paulo.

Gráfico 3 – Acidentes por atividades realizadas no ano 2011 ■ Transposrte Rodoviário ■ Postos e Sistemas Retalhista de Combustíveis Indústrias 3.69% 2.95% Descartes 5.90% 4.67% Transposrte Aquaviário 0.49% 1.72% Outras Armazenamento 52 32% ■ Mancha Órfã 0.25% 6.39% Nada Constatado Não Identificada 2.95% Transporte Ferroviário Total de Acidentes: 407 ■ Transporte por Duto

Fonte: São Paulo (2012).

Observa-se que novamente o transporte rodoviário é o que mais ocasionou acidente, neste gráfico o campo fixo aparece divido em descarte, indústria, postos e sistemas

de retalhistas de combustível e armazenamento, onde computados os percentuais dos três chegaria a um total de 18,43 % (dezoito vírgula quarenta e três por cento).

Com isso conclui-se que os modais ferroviários, dutoviário, hidroviário e aéreo (este nem ao menos aparece com percentuais na estatística apresentada acima) possuem pouca representatividade quando se fala em emergências envolvendo produtos perigosos onde somados alcançam um percentual de 6,89 % (seis vírgula oitenta e nove por cento) ou seja de um universo de 407 (quatrocentos e sete) acidentes apenas 28 (vinte e oito) foram nesses modais, isto conforme o gráfico 3. Já em relação à tabela 1, os quatro modais antes referidos, alcançam um total de 56 (cinquenta e seis) de um universo de 762 (setecentos e sessenta e dois) acidentes, ou seja, 7,35 % (sete vírgula trinta e cinco por cento).

Embasado nisto, este trabalho focará nestas duas atividades, transporte rodoviário e fixo (descarte, indústria, postos e sistemas de retalhistas de combustível e armazenamento), pois são essas as que mais ocasionam emergências envolvendo produtos perigosos. E até mesmo para restringir a pesquisa evitando que se perca o foco no objetivo deste trabalho.

2.7 Equipamento de proteção individual

O atendimento de uma emergência envolvendo produtos perigosos gera diversos riscos a integridade dos profissionais que atuam nesta modalidade de emergência, por isso é necessário o uso de equipamentos de proteção individual específicos de acordo com os riscos apresentados pelo produto, tamanho do vazamento, locais atingidos e atividades a serem realizadas. (HADDAD; LAINHA, 2002)

A Norma Regulamentadora numero 6 (seis) (NR-6) do Ministério do Trabalho e Emprego define EPI como "todo dispositivo ou produto, de uso individual utilizado pelo trabalhador, destinado à proteção de riscos suscetíveis de ameaçar a segurança e a saúde no trabalho. (BRASIL, 1978)

Os equipamentos de proteção individual utilizados em uma EPP são:

- a) Luvas;
- b) Roupas de proteção química;
- c) Botas;
- d) Óculos;
- e) Equipamento de proteção respiratória.

Uma das partes mais importantes no EPI quando se fala de PP é a roupa de proteção química. Existem hoje no mercado, diversos matérias de confecção para a fabricação

de roupas de proteção, eles dividem-se em elastômeros (cloreto de polivinila, Neoprene, polietileno entre outros) e não elastômeros (tyvek e outros materiais).

Para minimizar os riscos de exposição é essencial a seleção adequada do material que é confeccionada a roupa de proteção, pois cada material fornece um grau de proteção à pele contra diversos produtos, mas nenhum desses fornece proteção máxima contra todos os produtos químicos. (HADDAD; LAINHA, 2002)

Por isso a partir de agora se dará ênfase as roupas de proteção química utilizadas em emergência envolvendo produtos perigosos.

3 ROUPAS DE PROTEÇÃO QUÍMICA

Entre os equipamentos de proteção individual, que são utilizados quando o Corpo de Bombeiros Militar se depara com uma ocorrência envolvendo produtos perigosos, está à roupa de proteção química, que daqueles é o que possui uma efetividade de proteção maior e pode ser considerado um dos mais importantes equipamentos de proteção individual quando se trata de uma emergência com PP.

Elas possuem a finalidade proteger o corpo dos produtos químicos perigosos que podem provocar danos à pele ou se em contato com a mesma, ser absorvido e afetar outros órgãos. (HADDAD; LAINHA, 2002)

Serão apresentadas a seguir algumas informações importantes, que devem ser levadas em consideração quando for escolher a RPQ correta para atuar em uma emergência.

3.1 Classificação quanto ao nível de proteção

São divididos em quatro níveis de proteção, nível A, B, C e D. Abaixo serão apresentados cada um dos níveis, descrevendo os equipamentos que o acompanham e suas peculiaridades:

a) Nível de proteção "A"

Segundo Óliveira (2000) a RPQ nível "A" é utilizado quando é necessário o maior nível de proteção ao sistema respiratório, da pele, membranas mucosas e olhos. É um traje totalmente encapsulado, luvas internas e externas, botas, todos com resistência química. Acompanha a roupa o equipamento autônomo de respiração com pressão positiva, roupa interna em algodão, capacete e equipamento portátil de comunicação via rádio. Como pode ser percebido na figura 5.

Figura 5 – Nível "A"

Fonte: Corpo de Bombeiros da Polícia Militar do Estado de São Paulo (2005, p. 188).

b) Nível de proteção "B"

O nível "B" de proteção pode ser visto na figura 6, para Araújo (2005) este é usado quando se deseja um nível máximo de proteção respiratória, mas um nível menor de proteção para a pele. Constituído por roupa de proteção química (capas e jaquetas com mangas longas, capas com capuz, macacões, roupas de proteção contra respingos em duas peças, e outras), luvas externas e internas com resistência química, botas internas e externas sendo a primeira com resistência química e a segunda com palmilha e biqueira de aço. Agrega a roupa ainda o equipamento autônomo de pressão positiva, capacete e rádio de comunicação, intrinsecamente seguro.

Figura 6 - Nível "B"

Fonte: Corpo de Bombeiros da Polícia Militar do Estado de São Paulo (2005, p. 189).

c) Nível de proteção "C"

Conforme o Corpo de Bombeiros Militar do Estado do Rio de Janeiro (2004) o nível "C" será empregado quando o contaminante do ar é conhecido, já foi realizada a medida da sua concentração e os critérios de seleção para uso de equipamentos de proteção respiratória estão de encontro com os padrões, e a exposição da pele e dos olhos é indesejada. A roupa a ser utilizada será com resistência química (macacão, conjunto de duas peças com capuz, roupa descartável), acrescentando – se a esta os seguintes equipamentos: luvas internas e externas com resistência química, máscara facial e filtro químico, botas externas com palmilha e biqueira de aço, capacete, rádio de comunicação intrinsecamente seguro e ainda uma máscara de fuga que é opcional. É possível efetuar a visualização deste nível de proteção na figura 7.

Figura 7 - Nível "C"

Fonte: Corpo de Bombeiros da Polícia Militar do Estado de São Paulo (2005, p. 190).

d) Nível de proteção "D"

Já a apostila da Secretária Nacional de Segurança Pública (BRASIL, 2008) cita que o nível "D" é o próprio uniforme de trabalho das equipes de socorro urbano e de outros profissionais que trabalham próximo de locais que possuam produtos perigosos. Este não deve ser empregado quando tiver qualquer risco de ao sistema respiratório ou a pele. A figura 8 representa este nível de proteção.

Fonte: Corpo de Bombeiros da Polícia Militar do Estado de São Paulo (2005, p. 191).

3.2 Classificação quanto ao estilo

As roupas de proteção química podem ser apresentadas em duas formas de traje o completamente encapsulado ou não encapsulado.

Trajes encapsulados são aqueles que são confeccionados em uma única peça que envolve todo o usuário. Ficam integrados as botas, luvas e o visor (se forem removíveis terão que ser conectadas à roupa através de um dispositivo que seja à prova de gases e vapores) e o zíper com vedação perfeita contra gases e vapores. A proteção respiratória e o ar respirável são mantidos por um conjunto autônomo de respiração com pressão positiva, interno à roupa, ou, por uma linha de ar mandado, que mantenha pressão positiva dentro da mesma. Ela é usada para proteger o usuário contra gases, vapores e partículas tóxicas no ar e também contra respingos de líquidos. (CORPO DE BOMBEIROS DA POLÍCA MILITAR DO ESTADO DE SÃO PAULO, 2006)

Já os trajes ditos como não encapsulado, não possuem proteção facial como parte integrante. O conjunto autônomo de respiração, linha de ar ou máscara com filtro poderão ser utilizados por fora da roupa de proteção química. Esta poderá ser de dos tipos: uma peça única (do tipo macacão) ou conjunto de calça e jaqueta. Qualquer um dos dois tipos poderá incluir um capuz e outros acessórios. Seu objetivo é a proteção contra respingos. (HADDAD; LAINHA, 2002)

3.3 Classificação quanto ao uso

As RPQ podem ser classificadas ainda quanto ao uso, apresentando-se como permanente ou descartável.

Entende-se como permanentes aquelas que são fabricadas com materiais resistentes, que garantem maior durabilidade. São usadas quando ocorrem derramamento de líquidos corrosivos ou gases sob pressão. Os materiais mais encontrados são: viton, borracha, policloreto de vinila, neoprene e teflon. (ARAÚJO, 2005)

Quanto às descartáveis a "classificação é relativa e está baseada no custo da roupa e na inviabilidade de descontaminação. O custo da roupa protetora descartável é considerado como menor que \$25 (vinte cinco dólares) por traje. Em alguns casos usa-se esta roupa por cima de outras mais caras para reduzir o custo da descontaminação." (CORPO DE BOMBEIROS MILITAR DO ESTADO DO RIO DE JANEIRO, 2004)

3.4 Classificação quanto ao material de confecção

Existe uma gama enorme de materiais que podem vir a serem utilizados na confecção das roupas de proteção química, eles são divididos em dois grupos: os de materiais revestidos (também conhecido como elastômero) ou laminados (não elastômero).

3.4.1 Materiais revestidos (elastômero)

Nesta categoria estão os materiais que são compostos por tecidos revestidos com materiais de alta resistência química. Os tecidos conferem uma alta resistência mecânica aos conjuntos finais, desta forma as roupas são de alta qualidade, mas com custo muito elevado. (CORPO DE BOMBEIROS MILITAR DO ESTADO DO RIO DE JANEIRO, 2004)

As bibliografias pesquisadas apresentam uma variedade destes materiais, porém tomará como base para este trabalho os que Araújo (2005) considerou como os principais:

a) Viton

É uma borracha sintética ótima resistência química e mecânica, é utilizado na RPQ como um composto formado por Viton e borracha butílica. Este é fabricado com aplicação de várias camadas de Viton e de borracha butílica sobre tecido à base de poliamida.

Oferece proteção contra diversos produtos entre eles estão o hidrocarbonetos clorados, óleos, gasolina, benzeno e amônia.

b) Borracha Butílica

As roupas com este material apresentam boa mobilidade e resistência mecânica. Apresenta boa proteção contra gases, é indicada também contra solvente orgânicos, peróxidos, ácidos, alcoóis, amônia e cloro.

c) Policloreto de Vinila (PVC)

É leve e resistente por isso é muito versátil, pode ser usada para proteger contra sais inorgânicos, ácidos ou bases pouco concentrados. Seu custo é inferior às roupas anteriores.

d) Umex

Este composto é elaborado com poliamida recoberta nos dois lados com uma mistura especial de poliuretanos. Possui uma boa resistência mecânica indicado em casos de ocorrências com ácido, cloro e base.

e) Himex

Composto feito de várias camadas, as externas são compostas por plástico especiais, já as do interior por borracha butílica todas sobre um tecido de poliéster. Boa proteção química (igual ou até superior a do Viton, com um preço menor), ótima proteção mecânica. Esta roupa possui vasta aplicação.

f) Durables 1

É um material revestido de poliéster com PVC, que gera um composto de boa resistência mecânica e resistência química moderada a uma diversidade de produtos químicos.

g) Durables 2

É mais sofisticado do que o 1, utiliza polímeros mais evoluídos de alta resistência química e mecânica, consequentemente as roupas com este composto possuem essas características (compara-se a roupa de Viton, com um custo médio em relação aquela).

3.4.2 Materiais Laminados (não elastômeros)

De acordo com o Corpo de Bombeiros Militar do Estado do Rio de Janeiro (2004, p.82) os materiais laminados:

São composições de um ou mais materiais, que se apresentam como filmes plásticos. De acordo com a composição que é criada, pode-se alcançar resistência química tão boa quanto ao dos materiais revestidos. A diferença básica neste caso é a resistência mecânica menor, entretanto o custo é mais acessível. Atualmente são produzidas mais roupas de materiais laminados do que materiais revestidos. (CORPO DE BOMBEIROS MILITAR DO ESTADO DO RIO DE JANEIRO, 2004, p. 82)

Muitas são as composições criadas para as roupas de proteção química, porém Araújo (2005) destaca as seguintes:

a) Chemrel Max

Excelente resistência química, principalmente com relação ao benzeno, benzina, produtos halogênicos, solventes orgânicos e hidrocarbonetos clorados. Fornece alta proteção contra respingos de líquidos tóxicos que possam ser absorvidos pela pele. É utilizado para a fabricação de roupas encapsuladas contra gases e contra respingos. Possui um preço acessível e um baixa resistência mecânica.

b) Tyvek QC

Material composto de microfibras de polietileno aderidas por calor e pressão e ainda laminado com um filme de polietileno, o que o torna impermeável e com boa resistência química. É confortável e possui boa maleabilidade. Este material é utilizado em diversas modelos de roupas de proteção sendo que os macacões são indicados contra respingos de produtos perigosos, tais como ácido e base e ainda alguns solvente.

c) Saranex 23-P

É composto de diversas camadas de material laminado, entre elas o polietileno de baixa densidade, com uma camada de resina e um copolímero de cloreto vinílico e externamente uma camada de etileno vinil-acetato (EVA). Ótima proteção contra líquidos tóxicos e aerodispersóides e ainda possui grande resistência mecânica.

d) Barricade

É feito de um filme de múltiplas camadas laminado sobre um substrato forte de polipropileno. Este material apresenta alta resistência mecânica e química para muitos produtos. Utilizado na confecção de macacões e incluindo roupas encapsuladas contra gases.

e) CPF III

É constituído de um substrato de polipropileno, camada de material para agregação e um filme de multicamadas especial. Possui alta resistência mecânica e química. Pode ser utilizada como roupa intermediária entre Saranex e o Barricade. Se levar em consideração a sua resistência química o custo é acessível.

f) CPF IV

Utiliza uma quantidade maior de polipropileno em um filme externo mais espesso de multicamadas especial em comparação ao CPF III. Utilizado em roupa de proteção máxima. Alta resistência química mecânica, protege contra uma gama enorme de produtos químicos e seu preço não muito elevado.

g) Life Guard Responder

Este material utiliza na sua fabricação, diversos monômeros colocados em um substrato para sustentação. Possui boa resistência mecânica e química e é leve. Utilizado como roupa de proteção química em vários países. Apresenta boa eficácia na proteção contra gases e boa relação custo-benefício.

3.5 Requisitos de desempenho para roupas de proteção química

Para se selecionar uma roupa de proteção química, além do material que ela é confeccionada, do uso e do estilo ela terá alguns requisitos de desempenho, que se deverá levar em consideração no momento de optar pelo material adequado de proteção. A seguir serão apresentados estes requisitos básicos a serem exigidos:

a) Resistência Química

Em uma RPQ este é o requisito mais importante, trata-se da capacidade de um determinado material em suportar as variações químicas e físicas. Ele deve manter-se integro

estruturalmente e também sua qualidade de proteção quando em atividade direta com substâncias químicas. (HADDAD; LAINHA, 2002)

Agregado a esta característica estão outras três, resistência a degradação, penetração e permeabilidade que realmente determinam se uma RPQ é de qualidade ou não.

b) Degradação

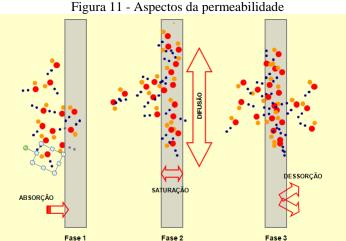
É o rompimento molecular de um material devido a um contato químico através de uma ação química. Isto se percebe através de alterações físicas como bolhas, encolhimento do material, mudança da cor, surgimento de bolhas ou estrias, ressecamento grave ou suave, inchamento ou ainda que mudanças que prejudiquem a sua resistência física e química. (CORPO DE BOMBEIROS MILITAR DO ESTADO DO RIO DE JANEIRO, 2004) Como pode ser visto na figura 9.

Figura 9 - Material degradado

Fonte: Araújo (2005, p.713).

c) Penetração

É a transposição de um produto através de aberturas na roupa, como se pode observar na figura 10. Isto pode ocorrer por uma imperfeição na roupa ou até mesmo no projeto. Alguns pontos como pontos de costura, orifícios de botões ou zíperes podem permitir a penetração do produto ou até mesmo o próprio tecido. Isto pode ser prevenido com a existência de juntas vedadas com fita colante ou zíperes selados. (HADDAD; LAINHA, 2002)


Figura 10 - Penetração de um produto em um material

Fonte: Araújo (2005, p.714).

d) Permeabilidade

Trata-se de um processo em que o produto se infiltra pelo material a nível molecular, por isso é impossível de ser verificada a dinâmica, apenas se percebe o resultado. Este processo é dependente de três aspectos, adsorção do produto na superfície do material, difusão do mesmo na roupa e a dessorção do produto na parte da roupa que esta em contato com o usuário. Conforme a temperatura, espessura do material, efeito químico sobre o material e exposições anteriores são fatores que variam a velocidade da permeação (esta velocidade é a taxa de permeabilidade). (ARAÚJO, 2005)

Os três aspectos da permeabilidade estão bem exemplificados na figura 11.

Fonte: Lakeland Asia Pacific (2012).

e) Inflamabilidade

A Inflamabilidade se relaciona com o tempo que um determinado combustível leva para incendiar (ignição) desde o momento em que entra em contato com uma fonte de calor. (BEUTLING, 2009)

É importante ressaltar que estas roupas não são apropriadas para o combate a incêndio propriamente dito, porém é importante que ela possua esta característica para que ao contato com o calor não derreta e cole na pele do usuário. (ARAÚJO, 2005)

f) Durabilidade

Pode-se dizer que é a resistência conferida ao material, avaliada através da sua capacidade de resistir ao uso, ou seja, de resistir a perfurações, abrasão e rasgos. (HADDAD; LAINHA, 2002)

g) Proteção Completa

A RPQ tem que impedir o contato do produto químico com o usuário, ou seja, tem que ser estanque, garantir, permitindo assim a proteção total do usuário. Testes de derrames e pressão devem ser feitos para se ter certeza da qualidade da roupa. (ARAÚJO, 2005)

h) Flexibilidade

Flexibilidade é uma característica muito importante, pois trata da capacidade para curvar ou dobrar e isso influencia na mobilidade, agilidade e restrição de movimentos do usuário. (HADDAD; LAINHA, 2002)

3.6 Tipos de costuras das roupas de proteção química

Tão importante quanto escolher o material de confecção e nível de proteção adequado, também o é o tipo de costura utilizado nas roupas de proteção química. Se tiver uma roupa com o tecido adequado e uma costura errada a roupa é considerada sem proteção.

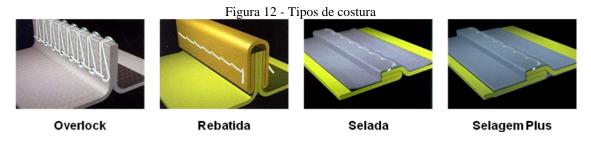
Conforme Lakeland Asia Pacific (2012) existem quatro tipos de costuras para as roupas de proteção química, estas podem ser visualizadas na figura 12:

a) Overlock

Este modelo possui uma baixa barreira de proteção, custo e consequentemente baixa resistência física e química. É um tipo de costura largamente usado nas RPQ's. Indicadas quando o produto agressivo são partículas secas.

b) Rebatida

Este modelo apresenta uma melhor barreira de proteção, a penetração do produto já é mais difícil de ocorrer. Possui uma boa resistência a spray, é mais utilizada em "salas


limpas" (salas onde se possui o controle de partículas suspensas no ar, através de um sistema de ar condicionado, muito usada para manufaturas ou testes de produtos onde estas partículas podem interferir no resultado). Tem um custo mais elevado que o primeiro tipo, considerado moderado. Indicada para o contato com partículas secas.

c) Selada

A costura selada é impermeável apresenta uma melhora considerável na resistência da costura acrescentando a isto uma excelente resistência química. Sua fabricação é através de um duplo processo. Por proporcionar tamanha proteção seu custo é mais alto que as anteriores. Usada quando ocorre o risco de respingos químicos.

d) Selagem Plus

Também é impermeável, agrega uma resistência maior do que a do tecido utilizado na confecção da roupa. Sua fabricação é através de um triplo processo. Apresenta uma barreira contra vapores, seu custo é relativo ao grau de proteção. Aplicada quando o produto químico pode ocasionar respingos químicos.

Fonte: Lakeland Asia Pacific (2012).

3.7 Descontaminação das roupas de proteção química

A descontaminação da RPQ nada mais é que a retirada física das substâncias que ficam na roupa, ou ainda da substituição de sua natureza química perigosa (através de reações químicas) por outra de propriedades inócuas. (CORPO DE BOMBEIROS DO ESTADO DO RIO DE JANEIRO, 2004)

3.7.1 Métodos de descontaminação

Existem diversos métodos de descontaminação das roupas de proteção química, quem determinará qual deles será utilizado é o produto envolvido da emergência. Dependendo da situação poderá ocorrer de um combinado de métodos descontaminantes. Elencou-se seis procedimentos para esta ação, são eles:

Diluição: consiste na redução da concentração do contaminante a níveis não perigosos. É eficiente, principalmente, se o produto não penetrar na roupa. Esta técnica é a mais comumente aplicada.

Dissolução: consiste na adição de uma substância intermediária durante o processo de descontaminação. Por exemplo, a utilização de querosene como produto intermediário para descontaminação de óleo combustível.

Surfactação: aplicado para melhorar a limpeza física. É um importante instrumento de checagem da dissolução. Fosfato trissódico é o agente surfactante mais comumente utilizado. Detergentes industriais também podem ser utilizados.

Neutralização: normalmente utilizado em substâncias corrosivas. Por exemplo, quando um ácido está envolvido, uma base pode ser utilizada para a descontaminação e vice-versa.

Solidificação: técnica baseada na aplicação de agentes gelatilizantes, os quais solidificam o contaminante, facilitando dessa forma, a sua remoção.

Aeração: técnica simples e eficiente, realizada por meio da aplicação de vapor d'água no material contaminado. Apresenta bons resultados em produtos voláteis. (CORPO DE BOMBEIROS DA POLICIA MILITAR DO ESTADO DE SÃO PAULO, 2006, p. 145 – 146)

3.7.2 Procedimentos de Descontaminação

Os procedimentos variam de acordo com a toxidade do produto, para Haddad, Silva e Teixeira (2002) eles se dividem em três procedimentos distintos, são eles:

a) Para produtos com baixa toxicidade

Lavar por completa a RPQ com uma solução fraca (1 a 2%) de fosfato trissódico e enxaguar com água. Após lavar as mãos e o rosto com água e sabão. Se não for possível descontaminar a roupa no local ela deverá ser conduzida em invólucro plástico, para que os procedimentos adequados sejam feitos em local apropriado. A quadro 5 apresenta exemplos de substâncias que este procedimento se enquadra:

Quadro 5 – Substâncias consideras de baixa toxicidade

Acetato de butila	Benzeno	Etilenoglicol	
Acetofenona	Benzoato de butila	Etilmetilcetona	
Acetona	Acetona Butadieno		
Ácido adípico Ciclohexano		Gasolina	
Ácido Cloreto de amônio		Glicerina	
cloroisocianúrico	Cloreto de vinila	Hexilacrilato de	
Ácido oleico	cido oleico Clorofórmio		
Ácido oxálico	Cloropentano	Metiletiléter	
Álcool etílico	Dissulfeto de	Óleo diesel	
Álcool metílico carbono		Óleo lubrificante	
Amônia	Etanoglicol	Óleo pesado	

Fonte: Haddad, Silva e Teixeira (2002, p. 131).

b) Para produtos com média toxicidade

No local da ocorrência, deve-se lavar a roupa com água, após colocá-la em invólucros plásticos para o transporte. Já em um local apropriado, esfregá-la e mais uma vez enxaguá-la com água. Até mesmo a roupa utiliza por baixo da RPQ deve ser removida e lavada. No quadro 6 estão elencadas alguns exemplos de produtos os quais é normalmente adequado este procedimento:

Quadro 6 - Exemplos de substâncias com média toxicidade

Quadro o E	mempros de substancias com me	dia tollicidade
Acetaldeído	Oleum	Etilamina
Ácido perclórico	Paraldeído	Fluor
Acroleína	Pentassulfeto de fósforo	Fosfina
Anilina	Piridina	Hidróxido de sódio
Bromo	Sulfato de dietila	Isopropilamina
Ciclohexanol	Sulfeto de dimetila	Metilamina
Ciclopentano	Sulfeto de potássio	Metilparation
Cloreto de bromo	Toluidina	Nitrato de sódio
Cloreto de metila	Trisulfato de arsênio	Nitrofenol
Cloronitrobenzano	Xilidina	Nitrometano
Dicloreto de etileno	Ácido clorídrico	Óxido de etileno
1,4-dioxano	Acrilato de etila	Pentaclorofenol
Etilenoimina	Álcool alílico	Peróxido de hidrogênio
Fluoreto de hidrogênio	Brometo de metila	Praguicidas
Hidrossulfito de sódio	Cianeto de mercúrio	(líquidos e sólidos)
Hidreto de lítio	Ciclohexanona	Sulfato de dimetila
Lítio	Clorato de potássio	Sulfeto de hidrogênio
Metilnaftaleno	Cloreto de etila	Tetracarbonila de níquel
Nitrato de estrôncio	Cloro	1,1,2 – tricloroetano
Nitrobenzeno	Cumeno	Viniléter
Nitroglicerina	Diisopropilamina	Zinco dietílico

Fonte: Haddad, Silva e Teixeira (2002, p.133).

c) Para produtos com alta toxicidade

Ainda no campo da operação efetuar a lavação das roupas de proteção química após dispô-la. A equipe que efetuar a descontaminação deverá utilizar roupas de proteção, assim como equipamentos de respiração. Conduzir o invólucro até um local próprio onde a

RPQ será novamente lavada e esfregada e enxaguada com água. As roupas utilizadas no interior da RPQ deverão ser removidas e lavadas. Os invólucros plásticos utilizados para o transporte deverão ficar ao ar livre em área isolada impedindo o contato de outras pessoas. O quadro 7 demonstra alguns exemplos de substâncias que este procedimento é adequado:

Quadro 7 - Exemplos de substâncias com alta toxicidade

Acrilonitrila	Nitrato de urânio	2,4 – diisocianato de
Aldrin	Pentassulfeto de	tolueno
Arsina	antimônio	Fósforo
Cianogênio	Tetrametileno de chumbo	Metilhidrazina
Dibrometo de	Adiponitrila	Pentaborano
etileno	Alilamina	Tetraetileno de chumbo
Dioxina	Cianeto de hidrogênio	Tetróxido de nitrogênio
Fosgênio	Cloropicrina	

Fonte: Haddad, Silva e Teixeira (2002, p.134).

3.7.3 Soluções para descontaminação

As roupas de proteção química são constantemente descontaminadas através de uma limpeza utilizando água e detergente, com auxilio de escovas de cerdas macias finalizando com uma lavagem com água. Este processo pode não ser eficiente para a remoção de alguns produtos químicos contaminantes ou até mesmo este pode reagir com água. Uma forma de resolver este problema é utilizando uma solução química como descontaminante. Mas para isso deve-se ter conhecimento do produto contaminante e a solução tem que ser indicado por um químico. (BOMBEIRO MILITAR DA POLICIA MILITAR DO ESTADO DE SÃO PAULO, 2006)

Essas soluções serão apresentadas nos quadros 8 e 9, estão divididas em soluções para produtos conhecidos (entres as nove classes de risco) e produtos não conhecidos e ainda no quadro 10 uma relação entre classes de produtos químicos e a respectiva solução.

Quadro 8 - Soluções para produtos desconhecidos

SOLUÇÃO	FÓRMULA	APLICAÇÃO
A	5% de carbonato de sódio + 5% de fosfato trisódico. Misturar 1,8 Kg de fosfato trisódico comercial para 37,85 litros de água.	Materiais PH > 7
В	10% de hipoclorito de cálcio. Misturar 3,64 Kg para cada 37,85 litros de água.	Materiais PH < 7
Rinsagem	5% de solução de fosfato de trisódico para cada 37,85 litros de água.	A rinsagem é realizada após a neutralização

Fonte: Corpo de Bombeiros Militar do Estado do Rio de Janeiro (2004, p.16).

Quadro 9 - Soluções para produtos conhecidos

SOLUÇÃO	FÓRMULA	
A	5% de carbonato de sódio + 5% de fosfato trisódico. Misturar 1,8 Kg de fosfato	
	trisódico comercial para 37,85 litros de água.	
В	10% de hipoclorito de cálcio.Misturar 3,64 Kg para cada 37,85 litros de água.	
С	5% de solução de fosfato de trisódico para cada 37,85 litros de água.	
D	Solução diluída de ácido clorídrico. Misturar 0,47% litros de ácido clorídrico	
	concentrado em 37,85 litros de água.	
Е	Solução concentrada de água e detergente. Misturar até formar uma pasta e	
	aplicar com uma brocha ou pincel, após enxaguar com água em abundância.	

Fonte: Corpo de Bombeiros Militar do Estado do Rio de Janeiro (2004, p.17).

Quadro 10 - Relação material X solução

MATERIAIS	SOLUÇÃO
Ácidos inorgânicos e resíduos metálicos.	A
Metais pesados (mercúrio, chumbo, cádmio, etc.).	В
Pesticidas, organoclorados e dioxinas.	В
Cianetos, amoníacos, e outros resíduos inorgânicos não ácidos.	В
Solventes e compostos orgânicos.	A
Bifenílicos policlorados.	A
Resíduos oleosos e graxos não especificados.	С
Bases inorgânicas, resíduos alcalinos e cáusticos.	D
Materiais radioativos.	Е
Materiais etológicos.	A + B

Fonte: Corpo de Bombeiros Militar do Estado do Rio de Janeiro (2004, p.17).

Com essas informações os BBMs, com auxilio de um técnico em química serão capazes de efetuar a devida descontaminação das roupas de proteção química, evitando com isso o descarte deste EPI após o uso em uma emergência com produto perigoso. Diminuindo assim o desperdício do dinheiro público.

4 METODOLOGIA

O desenvolvimento deste trabalho empregou o método de abordagem hipotéticodedutivo, teve uma natureza exploratória, "estas pesquisas têm como objetivo proporcionar maior familiaridade com o problema, com vistas a torná-lo mais explícito ou constituir hipóteses." (GIL, 2009, p. 40)

A técnica de pesquisa a ser usada foi a de documentação direta, que segundo Marconi e Lakatos (2010) o material-fonte não serve apenas para trazer conhecimento mais também para evitar possíveis duplicações e esforços desnecessários.

Os dados foram levantados através de pesquisa bibliográficas, que "é desenvolvida com base em material já elaborado, constituí principalmente de livros e artigos científicos". (GIL, 2009, p. 44). Esta ocorreu através de livros de literatura corrente, ou seja, publicações sobre o tema abordado como livros, artigos e manuais.

Utilizou-se ainda pesquisa em documentos primários, esses "são aqueles documentos que não receberam nenhum tratamento analítico. Nesta categoria estão os documentos conservados em arquivos de órgãos públicos e instituições privadas." (GIL, 2009, p.46). Irá ser analisado nesta pesquisa dados referentes à circulação de produtos perigosos disponibilizados pela Defesa Civil de Santa Catarina e pelo Batalhão de Policia Militar Rodoviária de Santa Catarina (BPMRv).

A Defesa Civil de Santa Catarina elaborou no ano de 2010, para as cinco rodovias federais que cortam o Estado catarinense, os Planos Regionais de Atendimento Emergencial (PRAES), para acidentes com PP. Neles constam números de acidentes com PP para cada rodovia federal levantados de 2004 até 2006 junto a PRF, estes dados estão demonstrados no Anexo A, sendo que após o ano de 2006 mudou o sistema deste órgão e não mais foi possível identificar com clareza os acidentes com PP.

Ainda no PRAES constam os vinte PP que mais circula em cada rodovia, isto pode ser visto no Anexo B, este dado foi obtido junto ao Banco de Dados do Transporte Rodoviário de Produtos Perigosos de Santa Catarina (BDPP/SC) com um levantamento do ano de 2001 até 2009, sendo que atualmente esta em período de modernização do sistema, impedindo assim uma atualização dos dados. Essas informações foram obtidas com a Defesa Civil catarinense, através do correio eletrônico.

Juntamente com o BPMRv foi obtido dados, através de correio eletrônico, referentes aos acidentes envolvendo PP a partir do ano de 2001 até o de 2011 em todas as rodovias estaduais, estes dados são encontrados no Anexo C.

Juntando todos esses dados chegou-se a uma lista com todos os produtos perigosos que circulam nas estradas catarinenses, isto possibilitou verificar quais são as classes de risco que mais são encontradas em Santa Catarina.

Os PP hora levantados passaram a ser divididos conforme a região em que foram encontrados, após isto, separados por Batalhão de Bombeiro Militar, o que permitiu visualizar qual classe de risco que mais circula na área de cada BBM.

Estes dados serão apresentados no próximo capítulo, o qual se utilizou de gráficos para uma melhor visualização, onde consta a frequência de PPs por classe de risco assim como o percentual para cada uma destas.

5 SELEÇÃO ADEQUADA DA ROUPA DE PROTEÇÃO QUÍMICA

Em cada ocorrência o bombeiro se depara com uma situação diferente, poucos são os minutos que ele possui para decidir qual o equipamento adequado para o atendimento de uma emergência.

Ocorrências envolvendo produtos perigosos também apresentam este problema, e um dos equipamentos utilizados nestas situações são as roupas de proteção química, que por sua vez se não selecionadas corretamente, pouca ou nenhuma segurança irá trazer ao seu usuário, e ainda que se for utilizada de forma errada poderá danificar o citado equipamento.

Por isso será apresentado algumas formas de como selecionar a RPQ adequada para cada situação.

"A seleção da roupa de proteção mais adequada é uma tarefa mais fácil quando o produto químico é conhecido. A seleção torna-se mais difícil quando não se conhece o produto envolvido ou quando se trata de uma mistura de produtos, conhecidos ou não. (HADDAD; LAINHA, 2002, p. 13)

A maneira de selecionar a RPQ consiste em primeiramente avaliação do ambiente que o bombeiro vai trabalhar, identificação do produto envolvido (suas características químicas, físicas e toxicológicas), verificar se a concentração (conhecida ou esperada), representa risco à pele e por fim optar pela RPQ confeccionada com tecido que forneça as menores taxas de permeação e degradação por um maior tempo e ainda dizer se a roupa deve ser encapsulada ou não. (CORPO DE BOMBEIROS DA POLÍCIA MILITAR DO ESTADO DE SÃO PAULO, 2006)

5.1 Seleção do nível de proteção pelo tipo de ocorrência

O custo para adquirir uma RPQ de nível "A" é muito alto, o valor é entorno de R\$ 4.300 (quatro mil e trezentos reais), porém a maioria das ocorrências atendidas pelo CBMSC dispensa o uso desta, podendo ser substituída por outra de menor nível (isto será comprovado ainda neste capítulo). O que falta para os profissionais do CBMSC é informação sobre este assunto.

A seguir serão apresentados os níveis de proteção que devem ser utilizados conforme a ocorrência que o bombeiro irá atender.

a) Nível "A"

É aconselhável quando estão presentes na emergência produtos perigosos altamente tóxicos, oxidantes e corrosivos, nestas situações é necessária uma alta proteção para a pele e sistema respiratório e olhos. (ARAÚJO, 2005)

Acrescentam-se ainda duas situações, quando as atividades a serem desenvolvidas forem em locais confinados e sem ventilação ou se as leituras do equipamento de monitoramento indicar concentração perigosa de gases ou vapores na atmosfera. Lembrando sempre que se ocorrer dúvidas, ou não saber o grau de exposição e/ou contaminação a que o bombeiro estará exposto, a RPQ a ser utilizada deverá ser a de maior proteção, ou seja, a de nível "A". (CORPO DE BOMBEIROS DA POLÍCIA MILITAR DO ESTADO DE SÃO PAULO, 2006)

Pode-se concluir com isto que a RPQ com nível "A" de proteção é utilizada quando o bombeiro se depara com uma emergência onde existe concentração alarmante de gases e vapores (isto só será possível em ambientes fechados) ou produtos das seguintes classes:

- 1) Classe 5 Substâncias oxidantes e peróxidos orgânicos;
- 2) Classe 6 Substâncias Tóxicas e infectantes;
- 3) Classe 8 Substâncias Corrosivas.

Nesse caso, há risco de contaminação do gás ou vapor através do sistema tegumentar.

b) Nível "B"

Este nível deverá ser utilizado quando a agressão a pele for a um nível menor que a anterior. Recomenda-se ainda para as situações iniciais de entrada, até que o perigo, através de um equipamento ou método de análise, tenha sido detectado e analisado. E ainda quando for improvável a formação de gases ou vapores em uma concentração alta que possam ser danosas à pele. (ARAÚJO, 2005)

Aqui a preocupação maior é quanto à proteção respiratória, já a da pele fica com um rigor menor, portanto se enquadram neste nível os produtos da classe de risco dos gases, ou seja, classe 2.

Nesse caso, não há risco de contaminação do gás ou vapor através do sistema tegumentar. A pele é protegida apenas contra respingo ou materiais sólidos e líquidos presentes na emergência.

c) Nível "C"

Para este nível é aconselhado o uso quando a concentração de oxigênio (O2) no ambiente não for inferior a 19,5% (dezenove vírgula cinco por cento) em volume, quando o produto for identificado e a sua concentração for reduzida a um valor menor ao seu limite de tolerância sendo possível o uso de máscaras filtrantes. (HADDAD; LAINHA, 2002)

Pode-se enquadrar neste nível os produtos das classes 3 e 4, que são os líquidos e sólidos inflamáveis respectivamente. Caso esteja exalando gases tóxicos, é necessário que se utilize a proteção respiratória adequada.

Em caso de incêndio ou riscos de incêndio, os profissionais devem utilizar roupas adequadas para essa natureza da emergência.

d) Nível "D"

É utilizado quando se tem certeza que não existe nenhum risco tanto para a pele como para o sistema respiratório. Por isso este se resume ao fardamento operacional do CBMSC, podendo apenas utilizar luvas de borracha.

5.2 Seleção do nível de proteção em relação aos vapores e gases

Existe outro fator a ser considerado quando se trata de seleção de níveis de proteção, este é a concentração de vapores ou gases no ambiente de trabalho. A tabela 2 demonstra qual é o nível mais adequado em relação à concentração de gases ou vapores por PPM (partes por milhão).

Tabela 2 - Nível de proteção recomendado em relação a concentração de gás/vapor

Concentrações de gás/vapor desconhecido (ppm)	Nível de proteção recomendado
0 - 5	С
5 - 500	В
500 - 1000	A
> 1000	Possível perigo de explosão. Não entre na área.

Fonte: Haddad e Lainha (2002, p. 16).

5.3 Vantagens e desvantagens dos níveis de proteção A,B e C

O nível de proteção varia conforme o trabalho que o bombeiro ira realizar, mas para a primeira avaliação do local da emergência se faz necessário o uso ao menos do nível "B". As vantagens e desvantagens dos níveis A,B e C serão apresentados na quadro 11, é percebível que quanto maior o nível de proteção maior o desconforto. (HADDAD; LAINHA, 2002)

Quadro 11 - Vantagens e desvantagens dos níveis de proteção A,B e C

Níveis	Vantagens Vantagens	Desvantagens
A	- Maior nível de proteção.	- Volumoso e desconfortável.
	- Requer pouco treinamento.	- Acesso limitado à máscara autônoma.
		- Duração do uso limitado, especialmente com a
		máscara autônoma.
		- Custo inicial da roupa.
В	- Baixo custo e peso	- Proteção incompleta à pele
	- Longa vida útil	- Não pode ser utilizada para substâncias
	- Fácil acesso a máscara autônoma	tóxicas à pele e as substâncias devem ser
	- Boa para atmosferas acima do	conhecidas.
	IDLH (Perigo imediato a vida ou a	- Necessita significativo treinamento
	saúde) desde que a substância não	antes do uso.
	seja tóxica à pele	
С	- Relativamente barata	- Somente para atmosferas com concentração
	- Fácil de usar	de O2 maior que 19,5% em vol.
	- Baixo peso	- O ambiente deve, obrigatoriamente,
	- Longa vida útil	estar caracterizado e as substâncias devem ser
		conhecidas e não tóxicas à pele.

Fonte: Corpo de Bombeiro da Polícia Militar do Estado de SãoPaulo, 2005, p.196

Percebe-se que todos os níveis de proteção possuem vantagens e desvantagens consideráveis e que o nível "A" é muito desconfortável e possui um custo elevado isso comprova que só se deve usar este tipo de proteção quando realmente se faz necessário.

5.4 Seleção da roupa de proteção química pela classe de risco

Deve-se levar em consideração na hora de selecionar uma RPQ adequada para atividade do Corpo de Bombeiros a classe de risco do PP. Como este trabalho é voltado para a realidade do CBMSC, foi efetuado um levantamento das classes de risco que mais circulam nas rodovias federais e estaduais de Santa Catarina.

Todos os PP que circulam no Estado catarinense, de acordo com a pesquisa realizada para este trabalho, podem ser visualizados no Apêndice A.

Através de análise dos dados conforme foi apresentado no capítulo anterior chegou-se a classe de risco mais encontrada no Estado catarinense, como pode ser visualizado no quadro 12:

Quadro 12 - Quantidade de PP por classe de risco que circulam nas rodovias catarinense

CLASSES	QUANTIDADE
Classe 1 – Explosivos	0
Classe 2 – Gases	81
Classe 3 - Líquidos Inflamáveis	141
Classe 4 - Sólidos Inflamáveis	40
Classe 5 - Substâncias oxidantes e peróxidos orgânicos	8
Classe 6 - Substâncias Tóxicas e Infectantes	11
Classe 7 - Materiais Radioativos	0
Classe 8 Substâncias corrosivas	37
Classe 9 - Substâncias e artigos perigosos diversos	16
TOTAL	334

Fonte: adaptado de Brasil (2006) e Santa Catarina (2001-2011).

Com o quadro 12 pode-se concluir que a classe de risco que o bombeiro mais irá se deparar em uma EPP é a classe 3 (líquidos inflamáveis) para esta é dispensada o uso da RPQ nível "A", devendo ser utilizada a do nível "C" ou em uma situação muito crítica a de nível "B". Esta situação é válida também para a classe 4 (sólidos inflamáveis) que é a terceira classe mais encontrada, porém, vale ressaltar sempre que em caso de incêndio ou risco de incêndio, o profissional deve utilizar seu EPI específico, não utilizando nesse caso a RPQ.

Em segundo lugar encontra-se a classe 2 (gases), em uma emergência envolvendo esta classe a preocupação maior é com a proteção respiratória, aconselha-se o uso da RPQ de nível "B".

Subsequente aparece a classe 8 (substâncias corrosivas), nesta assim como nas classes 5 (substâncias oxidantes e peróxidos orgânicos), e classe 6 (substâncias tóxicas e infectantes) se faz necessário o uso de uma proteção nível "A", especialmente se for em local confinado. Nessas classes, é fundamental conhecer o produto envolvido na emergência, para entender a sua periculosidade, para se determinar qual a RPQ que os profissionais devem utilizar para atenderem a ocorrência. Vale lembrar que só se usara as roupas de maior proteção se elas forem realmente necessária, devendo se optar por outra mais cômoda, se a situação assim permitir, cabendo ao comandante da operação decidir com base nas informações técnicas e de técnicos presentes no local.

Verifica-se ainda que a classe 1 (explosivos) e classe 7 (materiais radioativos) não foram constatados nenhum produto em circulação ou envolvido em acidentes, porém não é de se descartar sua presença no Estado, mas sim que estes produtos possuem pouca circulação.

5.5 Classe de risco mais encontrada por Batalhão de Bombeiro Militar

Como o Estado de Santa Catarina possui diferentes atividades econômicas, seria impossível tratar as regiões do Estado de uma forma global. Para se dar uma atenção maior as peculiaridades de cada uma destas, dividiu-se Santa Catarina, para este estudo, por Batalhões de Bombeiro Militar, sendo assim em doze partes. Sendo que o as cidades estão distribuídas conforme a Portaria do Comando Geral do CBMSC número 32 (trinta e dois), podendo ser analisada na integra no Anexo D deste trabalho. Esta divisão pode ser verificada na figura 13.

Figura 13 – Circunscrição dos Batalhões de Bombeiro Militar de Santa Catarina

Fonte: Corpo de Bombeiros Militar de Santa Catarina (2012b).

Nota: Como o 11º BBM (Joaçaba) não foi ativado até a conclusão deste trabalho, não foi considerado para este estudo.

Preferiu-se apresentar detalhadamente cada BBM, para que este trabalho sirva de consulta para os bombeiros que trabalham nestes lugares possam avaliar os riscos que poderão se deparar em suas regiões quando em uma EPP. E ainda que possibilite um investimento adequado com a realidade deste Batalhão.

Vale ressaltar que o ideal seria que em cada quartel de bombeiro existisse roupa de proteção química dos três níveis de proteção, mas como o orçamento do CBMSC não permite, será apresentado o mínimo que cada BBM deve possuir em relação à RPQ.

5.5.1 Classes de risco mais encontradas no 1° BBM

O 1° BBM, com sede e área de atuação em Florianópolis, segundo os dados levantados para este trabalho a classe de risco mais encontrada na região deste quartel é a classe 3, seguida da classe 2, percebível no gráfico 4.

Gráfico 4 - Classes de risco encontradas na área do 1° BBM

Classe 2 - Gases

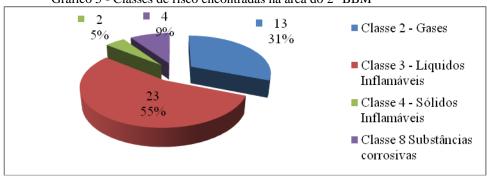
Classe 3 - Líquidos Inflamáveis

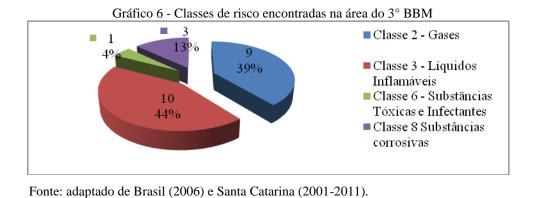
Fonte: adaptado de Brasil (2006) e Santa Catarina (2001-2011).

Para estas a roupa de proteção química de nível "C" seria suficiente, em casos mais críticos poderia ser utilizada RPQ nível "B".

5.5.2 Classes de risco mais encontradas no 2° BBM

Com sede na cidade de Curitibanos o 2° BBM já apresenta possui trânsito de cargas da classe 8, fato que se faz necessário a proteção nível "A", mas a grande maioria dos produtos que circulam nas estradas sob responsabilidade deste BBM são os da classe 2 e 3. Conforme o gráfico 5.

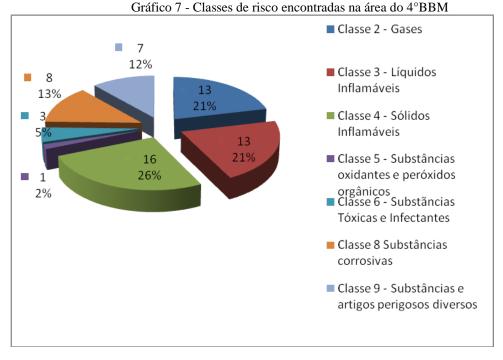



Gráfico 5 - Classes de risco encontradas na área do 2° BBM

Fonte: adaptado de Brasil (2006) e Santa Catarina (2001-2011).

Com isso a aquisição de RPQs de nível "B" poderia ser suficiente em um primeiro momento, tendo em vista que o custo deste é menor do que uma de nível "A". Vale ressaltar que a necessidade de aquisição de roupa de proteção química de nível "A" é evidente. O Gráfico 5 demonstra o que foi citado acima.

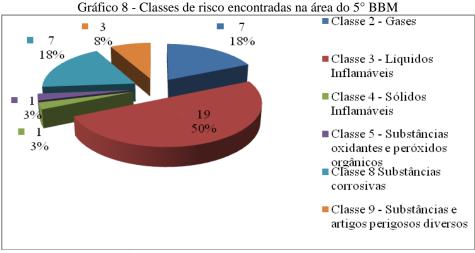
5.5.3 Classes de risco mais encontradas no 3° BBM


Neste BBM é de se destacar a grande quantia de produtos da classe 2, quase se equiparando ao da classe 3 de maior circulação em todo o Estado, como pode-se observar no gráfico 6, por isso se faz necessário a aquisição de RPQ de nível "B", até mesmo para preservar as de nível "A", deixando-as para serem utilizadas quando realmente for necessário.

Ressaltando que este BBM, que tem sede em Blumenau, deve possuir em seus EPIs, roupa de proteção química de nível "A", pois existe circulação de PP das classes 6 e 8.

5.5.4 Classes de risco mais encontradas no 4° BBM

A cidade de Criciúma é a sede deste BBM, ele é o que apresenta maior diversidade de classes, abrangendo todas as que circulam no Estado, com isto este deve possuir RPQs dos três níveis ou ao menos dos níveis "A" e "B". Esta informação pode ser confirmada pelo gráfico 7.

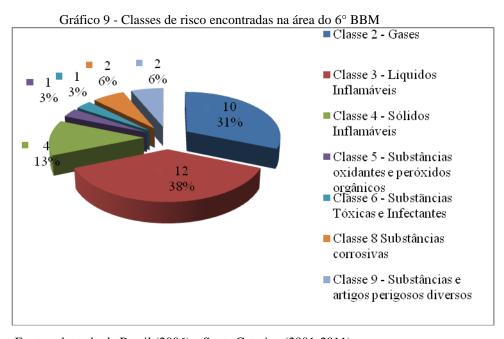


Fonte: adaptado de Brasil (2006) e Santa Catarina (2001-2011).

Lembrando que as de nível "C" possuem um custo de aquisição menor, e pode ser usado em ocorrências que envolvam as classes 3 e 4, responsável por 47% (quarenta e sete por cento) das EPP neste BBM, o uso desta evita o desgaste desnecessário das outras que possuem um custo de aquisição mais elevado.

5.5.5 Classes de risco mais encontradas no 5° BBM

Também a região do 5° BBM com sede em Lages, possui um diversidade de classes de risco, conforme o gráfico 8, com destaque maior a classe 3, assim como em todo o Estado, seguida das classes 2 e 8.

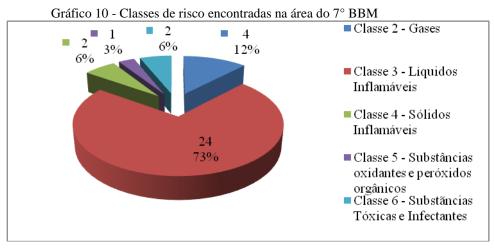


Fonte: adaptado de Brasil (2006) e Santa Catarina (2001-2011).

Como no 4° BBM se faz necessário possuir nesta região RPQs de todos os níveis. Principalmente a de nível "A", pois existe um número considerável de EPP envolvendo produtos da classe 8.

5.5.6 Classes de risco mais encontradas no 6° BBM

O 6° BBM com sede na cidade de Chapecó equipara-se ao 4° BBM quando se refere à diversidade de classes encontradas na sua região como pode ser observado no gráfico 9.

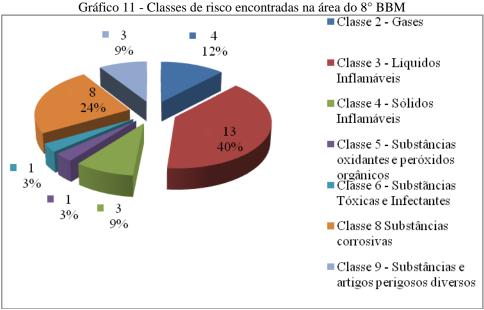


Fonte: adaptado de Brasil (2006) e Santa Catarina (2001-2011).

Deverão possuir nos materiais de seu trem de socorro RPQ dos três níveis de proteção pelos mesmos motivos apresentados no item 5.5.3 e 5.5.4.

5.5.7 Classes de risco mais encontradas no 7° BBM

A cidade de Itajaí sedia o 7° BBM, e de acordo com o gráfico 10, possui como classe de risco de maior circulação em sua circunscrição a classe 3. Porém apresenta também a classe 2, 4, 5 e 6 em menores números.

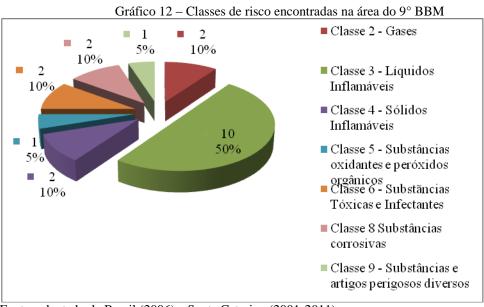


Fonte: adaptado de Brasil (2006) e Santa Catarina (2001-2011).

Por isso em um primeiro momento se faz necessário possuir roupa de proteção química do nível "C", e se tiver condições a de nível "B". Não se esquecendo que por existir circulação de PP das classes 5 e 6 se faz necessário em um segundo momento a possuir RPQ nível "A".

5.5.8 Classes de risco mais encontradas no 8° BBM

Neste BBM se destaca a presença expressiva da classe 8, fácil de ser percebido com auxilio do gráfico 11, ficando atrás apenas da classe 3, com isso se faz necessário a presença de RPQ nível "A" nos materiais do seu trem de socorro.

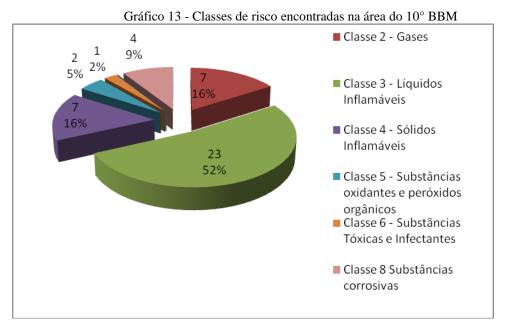


Fonte: adaptado de Brasil (2006) e Santa Catarina (2001-2011).

Com sede em Tubarão este apresenta a mesma situação do 4° e do 6° BBM, possuindo em sua área circulação de todas as classes de risco presente no Estado. Por tanto deve possuir roupa de proteção química dos três níveis de proteção.

5.5.9 Classes de risco mais encontradas no 9° BBM

Conforme o gráfico 12 este BBM, com sede em Canoinhas, participa das mesmas particularidades do BBM anterior, possuir em seu rol de classes de risco todas as presentes em Santa Catarina.



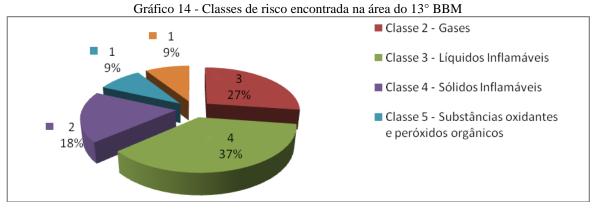
Fonte: adaptado de Brasil (2006) e Santa Catarina (2001-2011).

Para este BBM conforme já citado anteriormente se faz necessário possuir todos os níveis de proteção.

5.5.10 Classes de risco mais encontradas no 10° BBM

Com sua sede na cidade de São José este BBM possui um número grande de PPs das classes 2,3 e 4, isto é observável no gráfico 13.

Fonte: adaptado de Brasil (2006) e Santa Catarina (2001-2011).


Para estas classes o ideal seria RPQ nível "B" e "C". Mas ainda percebe-se ao analisar o Gráfico 13 a existência de produtos da classe 5,6, e 8 em pequeno número mas em um segundo momento se faz necessário possuir roupa de proteção nível "A".

5.5.11 Classes de risco mais encontradas no 12° BBM

A cidade de São Miguel do Oeste sedia este BBM, que possui uma peculiaridade, nos dados levantados só foi encontrada em circulação ou em acidente uma única classe de risco que foi a classe 2, por tanto para este é essencial que possua RPQ de nível "B".

5.5.12 Classes de risco mais encontradas no 13° BBM

No 13° BBM percebeu-se um equilíbrio entre as classes de risco, como pode ser verificado no gráfico 14. Mas as classes 2, 3 e 4 apresentam-se em maior número fato que leva a considerar como primordial que este BBM possua RPQ de nível "B" e até mesmo de nível "C".

Fonte: adaptado de Brasil (2006) e Santa Catarina (2001-2011).

Ressaltando ainda a existência de circulação de PP das classes 5 e 6 em menor número é verdade porém não se pode descartá-las, com isso este deve possuir ainda em um segundo momento RPQ de nível "A".

6 CONCLUSÃO E RECOMENDAÇÕES

A preocupação maior deste trabalho consistia em trazer informações que auxiliasse o bombeiro a selecionar a roupa de proteção química adequada quando se deparar com uma emergência com produtos perigosos e identificar qual a classe de risco que mais circulam nas rodovias catarinenses.

Primeiramente, se estudou sobre as diferentes formas de classificar as RPQs sendo quanto ao seu estilo, uso e material confeccionado e ainda foram demonstrados os requisitos de desempenho que uma RPQ deve possuir para garantir a segurança do bombeiro. Com isso foi possível diferenciá-las, pois cada uma delas possui uma particularidade, sendo que estas foram apresentadas neste trabalho.

Outra meta deste trabalho foi verificar as formas corretas de descontaminação das roupas de proteção química, pois estas possuem um custo elevado de aquisição, e com uma descontaminação correta, será possível reutilizá-la com segurança.

Para auxiliar na seleção adequada das RPQ foram apresentados alguns itens importantes a serem levados em consideração no momento da EPP como o tipo de ocorrência, em relação aos vapores e gases e ainda as vantagens e desvantagens dos níveis de proteção.

Este trabalho teve como perspectiva a realidade catarinense, foram levantadas através de análise de dados qual a classe de risco que mais circula nas rodovias de Santa Catarina.

Como cada região do Estado possui sua peculiaridade separou-se estas informações em regiões delimitadas pelas áreas de atuação dos Batalhões de Bombeiro Militar, possibilitando assim uma análise direcionada para a realidade deste. Com isso os bombeiros que lá atuam podem verificar qual a classe que tem maior possibilidade de se deparar em uma EPP. Além disto, foi sugerido qual nível de proteção cada BBM deve possuir para garantir o mínimo de segurança para seus bombeiros e também que ocorra um investimento correto conforme a necessidade deste BBM.

Com base no estudo já apresentado neste trabalho, e considerando que, muitas vezes os efeitos nocivos dos PP têm consequências imediatas ao evento, ou seja, quando da chegada dos bombeiros no local da emergência o risco de contaminação já reduziu significativamente, podemos concluir que os equipamentos nível "A" deveriam ser adquiridos e colocados a disposição de Bombeiros em algumas cidades, onde os riscos são potencializados pelas características industriais e movimentação de cargas, não podendo essa distribuição deixar regiões desprovidas de equipes especializadas e com os devidos

equipamentos necessários (RPQ de todos os níveis). Assim, baseado nas pesquisas, leituras e conversas informais que realizei ao longo deste trabalho, sugiro que nenhuma região fique a mais de 150 km (cento e cinquenta quilômetros) de distância de uma equipe especializada de resposta à EPP, e para tanto, apresento um kit básico para essa equipe:

- a) 4 roupas nível "A";
- b) 4 roupas nível "B";
- c) 8 roupas nível "C";
- d) Equipamentos para monitoramento ambieltal (multigás);
- e) 2 kits de descontaminação (cada kit: duas piscinas de 500 (quinhentos) litros, duas escovas de cerdas macias com cabo de 30 (trinta) cm, duas bombas costais de 20 (vinte) litros e demais EPIs).

Sugere-se para cidades com equipes especializadas: Criciúma, Palhoça, Balneário Camboriú (ou Itajaí), Garuva, Blumenau, Rio do Sul, Lages, Mafra, Joaçaba, Chapecó e São Miguel do Oeste. Destacar ainda que tão importante quanto os equipamentos é ter uma equipe treinada e capacitada.

Ao findar deste trabalho fica como sugestão, que se inclua no Programa de Matéria/Plano de Unidade Didática (PROMA/PUD) da disciplina de operações com produtos perigosos informações levantadas nesta pesquisa, tais como:

- a) Formas de classificação (estilo, uso e material de confecção);
- b) Requisitos de desempenho;
- c) Tipos de costuras;
- d) Forma de descontaminação;
- e) Forma correta de selecionar uma RPQ;

E ainda, que as informações aqui apresentadas, sejam levadas em consideração pelos BBMs para que possuam as RPQs citadas neste trabalho. E também que instruam os bombeiros de como atuar com a classe de risco que mais circulam na circunscrição deste BBM.

Deixa-se como instigação para um próximo trabalho um estudo voltado para a classe de risco 3 (líquidos inflamáveis) por ser a de maior circulação nas rodovias estaduais e federais do Estado de Santa Catarina.

Vale ressaltar ainda que para cumprir com o lema do CBMSC "Vida alheia e riquezas a Salvar" os bombeiros devem estar protegidos, principalmente em se tratando de uma EPP, pois de resgatistas podem se tornar vítimas caso a RPQ não seja a adequada.

REFERÊNCIAS

ARAÚJO, Giovanni Moraes de. **Segurança na armazenagem, manuseio e transporte de produtos perigosos.** 2. ed. Rio de Janeiro: Gerenciamento Verde, 2005. 948 p.

ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA QUIMICA. O desempenho da indústria química brasileira em 2010. São Paulo: ABIQUIM, 2010. Disponível em www.abiquim.org.br/enaiq2010/apr/desempenho-setor.pdf >. Acesso em 14 abr. 2012.
A indústria química em 2011. 2011. Disponível em: http://www.abiquim.org.br/enaiq2011/apr/A_industriaquimica_2011_ff.pdf . Acesso em: 14 abr. 2012.
Pro-quimica : estatística, 2012a. Disponível em: http://www.abiquim.org.br/conteudo.asp?princ=pro&pag=esta&subpag=2011 . Acesso em 15 abr. 2012
Déficit comercial em produtos químicos atinge US\$ 7,5 bilhões no primeiro
quadrimestre, 2012b. Disponível em http://www.abiquim.org.br/releases_abq/Rel_rece_abr12.pdf . Acesso em 15 mai. 2012.
BEUTLING, Alexandre. Modelagem do comportamento do fogo com base em experimentos laboratoriais e de campo. 144 f. Tese (Curso de Pós-graduação em Engenharia Florestal) Universidade Federal do Paraná, Curitiba, 2009.
BRASIL. Ministério do trabalho. NORMA REGULAMENTADORA Nº 6 , 8 de junho de 1978. Aprova as normas regulamentadoras - NR - do capítulo V, título II, da Consolidação das Leis do Trabalho, relativas a segurança e medicina do trabalho. Disponível em http://carep.mte.gov.br/legislacao/normas_regulamentadoras/nr_06.pdf . Acesso em: 10 jun. 2012.
Agência nacional de transportes terrestres. Resolução nº 420, de 12 de fevereiro de 2004. Aprova as Instruções Complementares ao Regulamento do Transporte Terrestre de Produtos Perigosos. Disponível em: http://www.antt.gov.br/resolucoes/00500/resolucao420_2004.htm . Acesso em: 3 jun. 2012
. Secretaria nacional de segurança pública. Curso intervenção em emergências com produtos perigosos. Brasília, 2008.
Companhia Nacional de Transporte. Pesquisa CNT de rodovias 2011 : relatório gerencial. Brasília: CNT : SEST : SENAT, 2011
CAMILO, Rafael Fortunato. Diagnóstico do Transporte Rodoviário de Produtos Perigosos no Trecho Sul da BR 101 em Santa Catarina . 125 f. Monografia (Curso de Tecnólogo em Gestão de Emergências) - Universidade do Vale de Itajaí, São José/SC, 2009.

CORPO DE BOMBEIROS MILITAR DE SANTA CATARINA. **Administração logística aplicada ao CBMSC.** 2012a. Trabalho não publicado.

_.**Endereços de Quarteis BM.** Disponível em <

http://www.cbm.sc.gov.br/index.php?option=com_wrapper&view=wrapper&Itemid=132>. Acesso em: 25 jul. 2012b.

CORPO DE BOMBEIROS MILITAR DO ESTADO DO RIO DE JANEIRO. Grupamento de Operações com Produtos Perigosos (GOPP). **Manual básico de operações com produtos perigosos**. Rio de Janeiro, 2004.

CORPO DE BOMBEIROS DA POLÍCIA MILITAR DO ESTADO DE SÃO PAULO. **Manual de atendimento às emergências com produtos perigosos.** São Paulo/SP, 2006.

HADDAD, Edson. Riscos associados às classes de produtos químicos. In: SÃO PAULO. Companhia de tecnologia de saneamento ambiental. **Prevenção, preparação e resposta a desastres com produtos químicos.** São Paulo: CETESB, 2002. p. 22-42.

HADDAD, Edson e LAINHA, Marco Antonio José. Equipamentos de proteção individual. In: SÃO PAULO. Companhia de tecnologia de saneamento ambiental. **Prevenção, preparação e resposta a desastres com produtos químicos.** São Paulo: CETESB, 2002. p. 72-120.

HADDAD, Edson, SILVA, Ronaldo de Oliveira e TEIXEIRA, Mauro de Souza. Descontaminação. In: SÃO PAULO. Companhia de tecnologia de saneamento ambiental. **Prevenção, preparação e resposta a desastres com produtos químicos.** São Paulo: CETESB, 2002. p. 130-153.

FERREIRA, Karine Araújo e RIBEIRO, Priscilla Cristina Cabral. Logística e transportes: uma discussão sobre os modais de transporte e o panorama brasileiro. In: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO, 22, out.2012, Curitiba. **Anais eletrônicos...** Curitiba, 2002. 1-8. Disponível em: http://tecspace.com.br/paginas/aula/mdt/artigo01-MDL.pdf>. Acesso em: 15 jun. 2012

GASPARINI, André. **Transporte Dutoviário e Meio Ambiente.** O controle da rede de dutovias terrestres da petrobrás operadas pela transpetro. 28 f. Dissertação (Curso de Mestrado em Engenharia de Transportes) Instituto Militar de Engenharia, Rio de Janeiro/RJ, 2006.

GIL, Antonio Carlos. Como elaborar projetos de pesquisa. 4. ed. São Paulo: Atlas, 2009.

KARSTEN. **Curso de capacitação em emergências com produtos perigosos**: nível 1: manual do participante. [S.1:S.1], 2002. p.18. Trabalho não publicado.

LAKELAND ASIA PACIFC. **Treinamento de produto**. 36 slides. Apresentação em Powerpoint. Trabalho não Publicado.

MARCONI, Marina de Andrade; LAKATOS, Eva Maria. **Fundamentos da Metodologia Científica. 7**. ed. São Paulo: Atlas, 2010.

MULLER, Daniel Gevaerd. **Vazamento de Amônia em Sistemas de Refrigeração de Indústrias de Pescado.** 117 f. Monografia (Curso de Tecnólogo em Gestão de Emergências) - Universidade do Vale de Itajaí (UNIVALLI), São José/SC, 2008.

NASCIMENTO, Cristiane A. do. **Acidentes com produtos perigosos nas rodovias federais de SC.** [mensagem pessoal] Mensagem recebida por: <marcelodg@cbm.sc.gov.br>. em: 28 jun. 2012.

OLIVEIRA, Marcos de. **Emergências com produtos perigosos:** Manual básico para equipes de primeira resposta. Florianópolis: CBPMSC, 2000. 80 p.

SANTA CATARINA. Secretaria de Estado de Infra-estrutura. **Ferroviário**. Disponível em: < http://www.sie.sc.gov.br/sie/competencias/ferroviario.do>. Acesso em: 1 jun. 2012a

_____. Secretaria de Estado de Infra-estrutura. **Aeroviário**. Disponível em: < http://www.sie.sc.gov.br/sie/competencias/aeroviario.do >. Acesso em: 1 jun. 2012b

SÃO PAULO. Companhia de Tecnologia de Saneamento Ambiental. **Gráfico de atividades de 01/01/2011 à 31/12/2011.** Disponível em: http://sistemasinter.cetesb.sp.gov.br/emergencia/graf_ativd3.php?inicio=01/01/2011&fim=31/12/2011#>. Acesso em: 1 jun. 2012

SILVEIRA, Antônio Pedro da. **Pontencialização da Segurança no Transporte Rodoviário de Produtos Perigosos, nas Rodovias Catarinenses, com Ênfase a Criação e Reforço Operacional, de Organizações Bombeiro Militares do Estado de Santa Catarina**. 386 f. 2009. Monografia (Curso de Pós-Graduação Lato Sensu em Administração Publica Com Ênfase em Gestão Estratégica Em Serviço De Bombeiros) - Universidade do Sul de Santa Catarina, Florianópolis/SC, 2009.

VIEIRA, Almir. Acidentes com produtos perigosos nas rodovias estaduaisrais de SC. [mensagem pessoal] Mensagem recebida por: <marcelodg@cbm.sc.gov.br>. em: 29 jun. 2012.

APÊNDICE A – Lista com os produtos perigosos encontrados nas rodovias federais e estaduias em Santa Catarina

N° ONU	Nome	Classe Risco	QUANTIDADE
1001	Acetileno	2.1	1
1005	Amônia	2.3	1
1006	Argônio	2.2	1
1013	Dióxido de carbon	2.2	1
1046	Hélio	2.2	1
1049	Hidrogênio	2.1	1
1056	Criptônio	2.2	1
1057	Acendedores de cigarro, com gás inflamável	2.1	1
1066	Nitrogênio, comprimido	2.2	1
1072	Oxigênio, comprimido	2.2	2
1073	Oxigênio Líquido Refrigerado	2.2	1
1075	Gás Liquefeito de pretróle	2.1	61
1077	Propeno	2.1	1
1093	Acrilonitrila	3	1
1114	Benzol	3	1
1133	Adesivos, contendo líquidos inflamáveis	3	1
1170	Etanol	3	13
1173	Acetato de etila	3	2
1193	Mek	3	1
1202	Óleo disel	3	23
1203	Gasolina e Álcool, Misturas	3	56
1208	Metilpentanos	3	1
1210	Tinta para impressão	3	1
1212	Isobutanol	3	1
1230	Álcool da Madeira	3	2
1233	Acetato de metilamila	3	1
1263	Tintas, inflamáveis	3	22
1287	Borracha em solução	3	1
1288	Óleo de xisto	3	1
1294	Tolueno	3	3
1323	Ferrocério	4.1	1
1340	Pentassulfeto de fósforo	4.3	1
1361	Carvão, betuminoso, marinho, de origem, animal ou vegetal	4.2	35
1362	Carvão, Ativado	4.2	2
1496	Clorito de Sódio	5.1	1
1498	Nitrato de sódio	5.1	1
1499	Nitrato de sódio e nitrato de potássio, mistura	5.1	3
1719	Líquido Alcalino Cáustico	8	4
1748	Hipoclorito de Cálcio	5.1	1
1759	Cloreto Ferroso, Sólido	8	1

	Sulvato de alumínio, Cloreto ferroso, medicamento corrosivo		
1760	sólido	8	11
1789	Ácido Clorídrico	8	1
1791	Hipoclorito solução	8	1
1805	Ácido Fosfórico	8	1
1824	Hidróxido de sódio	8	5
1830	Ácido sulfuric	8	2
1866	Resina	3	3
1942	Nitrato de Amônio	5.1	1
1950	Aerossóis	2	1
1977	Nitrogênio, líquido refrigerado	2.2	4
1993	Composto para limpeza, inflamáveis, líquidos	3	2
1994	Ferropentacarbonila	6.1	1
1999	Asfalto para estradas, liquid	3	1
2031	Ácido nitric	8	1
2055	Vinilbenzo	3	2
2209	Aldeído Fórmico, corrosivo, soluções	8	3
2211	Polímeros granulados, expansíveis	9	1
2251	Dicicloheptadieno	3	1
2291	Chumbo, composto, solúvel	6.1	1
2304	Naftaleno, fundido	4.1	1
2581	Cloreto de alumínio, solução	8	1
2734	Poliaminas e aminas corrosivas inflamáveis, líquidas	8	1
2794	Baterias elétricas, úmidas contendo ácido	8	3
2810	Líquido tóxico, organic	6.1	1
2811	Fluoreto de chumbo	6.1	1
2922	Hidrosulfito de Sódio	8	1
2992	Pesticidas à base de carbamatos, líquido, tóxico	6.1	1
2995	Pesticida à base de organoclorados, líquido, tóxico, inflamável	6.1	1
3017	Pesticida à base de organofosforado, líquido, tóxico, inflamável	6.1	2
3020	Pesticida à base de organoestânicos, líquido, tóxico	6.1	1
3071	Mercaptana, mistura, tóxica, inflamável líquida	6.1	1
3077	Substância que apresentam risco ao meio ambiente, sólido	9	1
3082	Substância que apresentam risco ao meio ambiente, líquida	9	12
3105	Peróxido orgânico, tipo D, líquido	5.2	1
3147	Corante, corrosivo, sólido	8	1
3257	Líquido à temperatura elevada	9	2
3286	Líquido inflamável, tóxico, corrosive	3	1
3351	Pesticida à base de piretróide, líquido, tóxico, inflamável	6.1	1

ANEXO A – Acidentes registrados envolvendo produtos perigosos nas rodovias federais $\mbox{de SC do ano de 2004 at\'e 2006}$

TABELA 03 – Acidentes com Produtos Perigosos (2004-2006)

		Acide	ntes com	Produtos	s Perigosos na BF	R 116 (2004-200	6)	
DELEGACIA	KM	DATA	HORA	ENVOLVIDOS	TIPO DE ACIDENTE	CAUSA PRESUMÍVEL	MORTOS	NÚMERO DA ONU
6	106.2	22/6/2004	03:00:00	2	COL COM OB. FIXO	FALTA DE ATENÇÃO	0	1760
5	185.2	29/6/2004	14:00:00	2	OUTROS	OUTRAS CAUSAS	0	1288
6	075.9	8/7/2004	09:25:00	1	TOMBAMENTO	FALTA DE ATENÇÃO	0	1203
6	078.9	26/10/2004	07:00:00	2	COL LATERAL	FALTA DE ATENÇÃO	0	1203
6	100.9	23/11/2004	18:50:00	5	COL TRASEIRA	DISTÂNCIA DE SEGMENTO	0	80;1719
5	211.4	26/11/2004	07:30:00	1	TOMBAMENTO	FALTA DE ATENÇÃO	0	1263
6	114.6	3/12/2004	08:15:00	2	COL TRASEIRA	DISTÂNCIA DE SEGMENTO	0	3082
6	126.4	9/12/2004	00:10:00	2	COL FRONTAL	FALTA DE ATENÇÃO	0	1263
5	204.0	20/1/2005	05:50:00	1	TOMBAMENTO	OUTRAS CAUSAS	0	DIVERSOS
6	024.9	30/11/2005	17:50:00	2	COL COM OB. FIXO	FALTA DE ATENÇÃO	0	1994
6	117.3	26/3/2006	22:30:00	1	TOMBAMENTO	FALTA DE ATENÇÃO	0	1287
5	227.4	29/3/2006	15:15:00	2	COL TRASEIRA	FALTA DE ATENÇÃO	0	3105
6	057.2	30/3/2006	01:20:00	3	COL FRONTAL	OUTRAS CAUSAS	2	1170

Fonte: PRF, 2006.

TABELA 03 – Acidentes com Produtos Perigosos (2004-2006)

	Acidentes com Produtos Perigosos na BR 280 (2004-2006)										
DELEGACIA	KM	DATA	HORA	ENVOLVIDOS	_		MORTOS	NÚMERO DA ONU			
3	055.3	3/1/2005	09:50:00	2	COL LATERAL	OUTRAS CAUSAS	0	1202			
6	219.0	5/4/2005	10:00:00	2	OUTROS	DEFEITO MECÂNICO	0	1203			
6	204.7	5/7/2005	21:30:00	2	COL COM OB.	ULTRAPASSAGEM	0	1075			
					FIXO	INDEVIDA					
3	056.1	20/8/2005	11:45:00	4	COL	FALTA DE ATENÇÃO	0	1202			
					TRASEIRA						
6	191.1	9/9/2005	02:00:00	2	COL LATERAL	DORMINDO	0	1499			

Fonte: PRF, 2006.

QUADRO 19 - Acidentes com Produtos Perigosos na BR-101/SC - Trecho Sul (2004-2006).

			Acid	entes con	n Produt	tos Perigosos na I	BR 101/Sul (2004-200	6)	
DELE-	BR	KM	DATA	HORA	ENVOL	TIPO DE	CAUSA	MOR	NÚMERO DA
GACIA	DIC	121/1	Dilli	noidi	-VIDOS	ACIDENTE	PRESUMÍVEL	TOS	ONU
2	101	402.7	6/4/2004	21:15:00	1	tombamento	outras causas	0	2055
2	101			05:35:00	7	col lateral	dormindo	0	1830;2031
1	101	225.6	24/4/2004	14:15:00	5	col frontal	outras causas	0	1170
1	101	221.7	30/4/2004	17:30:00	4	col traseira	falta de atenção	0	1203
2	101	403.9	20/5/2004	10:20:00	2	col transversal	falta de atenção	0	1824
2	101	421.3	22/5/2004	16:00:00	8	col lateral	defeito mecânico	0	1255
2	101		8/6/2004	13:00:00	2	col transversal	defeito mecânico	0	1830
2	101	384.1	17/6/2004	23:30:00	1	tombamento	dormindo	0	1760
2	101	251.0	25/6/2004	05:00:00	1	saída de pista	outras causas	0	1173;1212
2	101	339.2	7/7/2004	16:45:00	2	col lateral	falta de atenção	0	33:1203
2	101	308.9	25/7/2004	13:45:00	4	tombamento	outras causas	0	3082
2	101	259.3	13/8/2004	17:00:00	3	col traseira	distância de segmento	0	1170;1170
2	101	445.8	14/8/2004	18:20:00	3	col lateral	ultrapassagem indevida	0	DIVERSOS
2	101	287.1	18/8/2004	07:25:00	4	col frontal	outras causas	2	3257
	101	381.8	12/9/2004	16:20:00	5	col lateral	desobediência a	0	1824
2	101	361.6	12/9/2004	10.20.00	3	COI IaiCIai	sinalização	0	1024
1	101	224.6	27/9/2004	11:10:00	2	col lateral	falta de atenção	0	1233
1	101	223.5	10/10/2004		2	col transversal	outras causas	1	0012
2	101	381.3	25/10/2004	18:30:00	3	col lateral	desobediência a	0	2055
2	101	381.3	23/10/2004	18.30.00	3	COI Iateral	sinalização	0	2033
2	101	449.8	27/10/2004	08:00:00	2	col lateral	falta de atenção	0	3257
1	101	214.8	30/10/2004		1	outros	defeito mecânico	0	1361
	101	372.4		18:00:00	3	col lateral		0	1077
2			7/11/2004		2		falta de atenção		3082
2	101	419.5	21/11/2004	10:00:00	2	outros	outras causas	0	
	101	268.9	4/12/2004	10:30:00	4	col lateral	defeito mecânico		1093
2	101	404.4	8/12/2004	14:00:00	-	col traseira	outras causas	0	3082
2	101	255.1	12/12/2004	11:15:00	2	col lateral	outras causas	0	1361
1	101	224.3	14/12/2004	18:30:00	3	col lateral	falta de atenção	0	1942
1	101	229.7	3/1/2005	17:40:00		col traseira	falta de atenção		1203
1	101	238.4	27/1/2005	04:45:00	1	saída de pista	outras causas	0	1210;1263
2 2	101	346.0	3/2/2005	14:15:00	6	outros	defeito mecânico	0	1361
	101	309.8	8/2/2005	14:50:00	3	col lateral	falta de atenção	0	1866
2	101	392.7	11/2/2005	21:40:00	2	col lateral	falta de atenção	0	1498
2	101	303.7	14/2/2005	18:10:00	2	col lateral	falta de atenção	0	361
1	101	224.9	17/2/2005	07:30:00	3	col lateral	outras causas	0	1170
2	101	278.3	23/2/2005	14:00:00	5	col lateral	falta de atenção	0	1361
1	101	239.7	28/2/2005	12:30:00	2	col frontal	falta de atenção	0	1203
2	101	272.8	13/3/2005	07:30:00	3	col frontal	outras causas	2	2794
2	101	371.7	6/4/2005	15:30:00	6	col lateral	outras causas	0	1361
2	101	339.2	8/4/2005	18:00:00	3	col lateral	falta de atenção	0	1203
1	101	224.4	17/4/2005	20:00:00	7	col frontal	falta de atenção	0	1361
2	101	335.2	25/5/2005	11:40:00	2	col traseira	falta de atenção	0	1075
2	101		31/5/2005	06:15:00	1	saída de pista	outras causas	0	1230
1	101	237.3	1/6/2005	06:10:00	4	col traseira	distância de segmento	0	1789
1	101	239.5	30/6/2005	21:00:00	2	col lateral	falta de atenção	0	1075
2	101	316.5	3/7/2005	14:15:00	2	atrop pedestre	outras causas	0	1263
2	101	456.9	5/7/2005	15:00:00	2	col transversal	desobediência a	0	1203
							sinalização		
2	101	310.0	12/7/2005	07:50:00	3	col lateral	defeito mecânico	0	3082
1	101	230.9	13/7/2005	16:05:00	3	outros	outras causas	0	1824
2	101	281.5	22/7/2005	20:40:00	2	col lateral	falta de atenção	0	1170

2	101	297.9	5/8/2005	12:20:00	4	col lateral	defeito mecânico	0	1760
1	101	242.6	9/8/2005	07:00:00	4	col lateral	outras causas	0	1114
2	101	327.3	11/9/2005	16:20:00	9	col lateral	ultrapassagem indevida	3	1760;2922
2	101	353.7	19/9/2005	07:00:00	2	col traseira	falta de atenção	0	1361
2	101	342.1	13/10/2005	02:40:00	2	col transversal	falta de atenção	0	1170
2	101	417.3	11/11/2005	18:30:00	12	col traseira	falta de atenção	0	1075
1	101	213.8	18/11/2005	16:50:00	2	col lateral	falta de atenção	0	1361
2	101	417.0	22/12/2005	05:45:00	1	col com ob. fixo	dormindo	0	3257
1	101	227.7	24/12/2005	08:15:00	2	col transversal	falta de atenção	0	1075
2	101	333.0	6/1/2006	22:00:00	4	col traseira	falta de atenção	0	33;1170
2	101	352.7	26/1/2006	18:15:00	4	col traseira	falta de atenção	0	1170
2	101	355.1	18/2/2006	11:50:00	1	saída de pista	falta de atenção	0	1193
1	101	222.8	21/2/2006	10:30:00	2	col lateral	falta de atenção	0	1203
2	101	334.0	22/2/2006	07:40:00	1	outros	outras causas	0	1760
2	101	298.8	25/2/2006	11:30:00	1	saída de pista	outras causas	0	1203
1	101	259.0	12/3/2006	14:00:00	2	col lateral	ingestão de álcool	0	1361
1	101	236.0	5/4/2006	18:45:00	2	col lateral	falta de atenção	0	1263;1866;2291
2	101	443.9	10/4/2006	14:10:00	2	col lateral	ultrapassagem indevida	0	1173
1	101	228.0	28/4/2006	03:15:00	2	col lateral	falta de atenção	0	1049
2	101	309.6	15/5/2006	08:10:00	2	col lateral	falta de atenção	0	2209

Fonte: PRF, 2006.

TABELA 04 – Acidentes com Produtos Perigosos (2004-2006)

		Acidentes c	om Produ	itos Perigoso	s na BR 101/N	orte (2004-200	06)	
DELEGACIA	KM	DATA	HORA	ENVOLVIDOS	TIPO DE ACIDENTE	CAUSA PRESUMÍVEL	MORTOS	NÚMERO DA ONU
1	206.0	7/4/2004	07:30:00	3	COL TRASEIRA	FALTA DE ATENÇÃO	0	1075
1	192.8	13/5/2004	15:20:00	4	COL TRASEIRA	DORMINDO	0	1075
3	102.8	22/5/2004	09:50:00	1	CAPOTAMENT O	DEFEITO MECÂNICO	0	1999
1	205.0	26/5/2004	18:20:00	9	COL TRASEIRA	FALTA DE ATENÇÃO	0	1203
1	138.1	29/6/2004	03:45:00	1	SAÍDA DE PISTA	OUTRAS CAUSAS	0	1075
1	157.2	7/7/2004	05:50:00	1	OUTROS	FALTA DE ATENÇÃO	0	1263
3	111.6	15/7/2004	17:45:00	5	COL TRASEIRA	FALTA DE ATENÇÃO	0	1203
3	010.0	17/7/2004	07:00:00	4	COL LATERAL	FALTA DE ATENÇÃO	0	1230
1	142.1	3/8/2004	15:50:00	3	COL LATERAL	FALTA DE ATENÇÃO	0	1170
3	045.9	16/8/2004	13:30:00	2	COL TRASEIRA	OUTRAS CAUSAS	1	1361
1	171.8	2/9/2004	01:20:00	4	COL TRASEIRA	VELOCIDADE INCOMPATIVEL	0	1170
3	052.2	2/9/2004	15:45:00	5	COL TRASEIRA	FALTA DE ATENÇÃO	0	1866

TABELA 03 – Acidentes com Produtos Perigosos (2004-2006)

		Acider	ites com F	Produtos	Perigosos na BR-4	· /		
		Acidei	ites com i	Touutos	rengosos na bit-a	70 (2004-2000)		
DELEGACIA	KM	DATA	HORA	ENVOLVIDOS	TIPO DE ACIDENTE	CAUSA PRESUMÍVEL	MORTOS	NÚMERO DA ONU
4	056.4	23/4/2004	14:00:00	4	COL TRASEIRA	DISTÂNCIA DE SEGMENTO	0	1203
4	173.5	30/4/2004	15:00:00	2	COL LATERAL	VELOCIDADE INCOMPATIVEL	0	1203
4	058.6	10/5/2004	09:00:00	2	COL TRASEIRA	FALTA DE ATENÇÃO	0	1203
4	140.4	14/5/2004	17:00:00	3	COL TRASEIRA	DISTÂNCIA DE SEGMENTO	0	1203
4	191.9	15/6/2004	15:50:00	2	CAPOTAMENTO	FALTA DE ATENÇÃO	0	1361
4	100.2	19/6/2004	12:40:00	4	COL TRASEIRA	DISTÂNCIA DE SEGMENTO	0	1006;1001
4	128.2	9/8/2004	19:15:00	2	COL LATERAL	FALTA DE ATENÇÃO	0	1203
4	061.6	25/8/2004	14:30:00	2	OUTROS	DEFEITO MECÂNICO	0	1977
4	056.4	28/10/2004	18:15:00	4	COL LATERAL	DISTÂNCIA DE SEGMENTO	0	2251;073
5	267.3	6/12/2004	17:40:00	1	TOMBAMENTO	OUTRAS CAUSAS	0	2794
4	049.3	10/12/2004	15:45:00	2	COL FRONTAL	FALTA DE ATENÇÃO	1	1203
4	170.0	11/12/2004	04:20:00	1	COL COM OB. FIXO	FALTA DE ATENÇÃO	0	1202
5	226.1	31/1/2005	08:55:00	16	COL TRASEIRA	FALTA DE ATENÇÃO	0	1013
4	135.4	7/2/2005	16:15:00	14	ENGAVETAMENTO	FALTA DE ATENÇÃO	0	1203
4	177.1	15/3/2005	13:10:00	3	COL LATERAL	ULTRAPASSAGEM INDEVIDA	0	1075
4	186.9	24/3/2005	01:00:00	2	COL COM OB. FIXO	DEFEITO MECÂNICO	1	3082
4	053.1	10/6/2005	11:35:00	3	COL TRASEIRA	FALTA DE ATENÇÃO	0	1075
7	279.4	12/7/2005	23:00:00	1	TOMBAMENTO	DORMINDO	0	1824
5	205.9	1/9/2005	14:40:00	2	COL LATERAL	VELOCIDADE INCOMPATIVEL	0	1760
4	127.9	7/11/2005	13:30:00	3	OUTROS	DEFEITO MECÂNICO	0	1075
4	038.5	15/11/2005	10:30:00	3	COL LATERAL	FALTA DE ATENÇÃO	0	2575;2992
4	090.5	2/12/2005	10:00:00	8	COL TRASEIRA	FALTA DE ATENÇÃO	0	1203
4	029.7	7/12/2005	18:20:00	3	COL LATERAL	FALTA DE ATENÇÃO	1	1075
4	154.1	4/1/2006	08:30:00	7	OUTROS	DEFEITO MECÂNICO	0	1760;1719
4	149.1	29/3/2006	09:50:00	14	ENGAVETAMENTO	DISTÂNCIA DE SEGMENTO	0	1075;1202
4	136.2	17/4/2006	06:45:00	3	COL LATERAL	ULTRAPASSAGEM INDEVIDA	0	1760

TABELA 03 – Acidentes com Produtos Perigosos (2004-2006)

	Acidentes com Produtos Perigosos na BR-282 (2004-2006)										
DELEGACIA	KM	DATA	HORA HORA TIPO DE ACIDENTE CAUSA PRESUMÍVEL		CAUSA PRESUMÍVEL	MORTOS	NÚMERO DA ONU				
7	354.4	17/06/2004	08:30:00	1	SAÍDA DE PISTA	DEFEITO MECÂNICO	0	1824			
8	529.0	05/07/2004	08:55:00	2	COL TRANSVERSAL	FALTA DE ATENÇÃO	1	1977			
8	619.2	01/10/2004	17:05:00	2	COL TRASEIRA	FALTA DE ATENÇÃO	0	3082;3020			
8	520.9	28/10/2004	15:20:00	3	COL LATERAL	ULTRAPASSAGEM INDEVIDA	0	1203			
8	486.8	16/10/2005	01:05:00	1	TOMBAMENTO	OUTRAS CAUSAS	0	1075			
8	584.9	02/01/2006	07:00:00	1	TOMBAMENTO	VELOCIDADE INCOMPATIVEL	0	2304;0090			
7	385.0	25/01/2006	12:15:00	1	CAPOTAMENTO	VELOCIDADE INCOMPATIVEL	0	1066;1072; 1046			
7	439.0	29/04/2006	16:00:00	3	CAPOTAMENTO	VELOCIDADE INCOMPATIVEL	0	1263			

Fonte: PRF, 2006.

ANEXO B - Vinte produtos que mais são transportados nas rodovias federais de SC

Vinte Produtos (ONU) mais transportados na BR 116

Nº ONU	Total Nº ONU	Classe	Nº ONU	Total Nº ONU	Classe
1203	37 (15.35%)	3	3065	5 (2.07%)	3
3082	33 (13.69%)	9	1866	5 (2.07%)	3
1202	20 (8.3%)	3	1830	4 (1.66%)	8
1170	17 (7.05%)	3	1719	4 (1.66%)	8
1075	14 (5.81%)	2	1993	4 (1.66%)	3
1263	13 (5.39%)	3	1073	3 (1.24%)	2
1824	10 (4.15%)	8	2312	2 (0.83%)	6
1760	9 (3.73%)	8	2810	2 (0.83%)	6
2187	5 (2.07%)	2	2902	2 (0.83%)	6
3077	5 (2.07%)	9	1208	2 (0.83%)	3

Fonte: BDPP/SC, 2009.

Vinte Produtos (ONU) mais transportados na BR 280

Nº ONU Nº ONU Total № ONU Classe Total № ONU Classe 1203 43 (17.99%) 3 1866 5 (2.09%) 3 1202 30 (12.55%) 2014 5 (2.09%) 1075 19 (7.95%) 2 1013 2 4 (1.67%) 1263 10 (4.18%) 1956 4 (1.67%) 8 8 1824 9 (3.77%) 2789 4 (1.67%) 308:2 7 (2.93%) 1789 4 (1.67%) 1072 6 (2.51%) 1073 4 (1.67%) 1760 6 (2.51%) 8 1791 4 (1.67%) 8 6 (2.51%) 3 2 1170 1066 4 (1.67%) 1001 6 (2.51%) 2 1006 4 (1.67%)

Fonte: BDPP/SC, 2009.

Vinte Produtos (ONU) mais transportados na BR 470

Nº ONU	Total № ONU	Classe	Nº ONU	Total № ONU	Classe
1203	17 (17.17%)	3	3082	3 (3.03%)	9
1075	9 (9.09%)	2	1956	3 (3.03%)	2
1072	6 (6.06%)	2	1824	3 (3.03%)	8
1001	5 (5.05%)	2	1263	3 (3.03%)	3
1066	5 (5.05%)	2	1384	2 (2.02%)	4
2014	4 (4.04%)	5	1170	2 (2.02%)	3
1049	4 (4.04%)	2	1979	2 (2.02%)	2
1006	4 (4.04%)	2	1897	2 (2.02%)	6
1202	4 (4.04%)	3	2794	1 (1.01%)	8
1013	4 (4.04%)	2	1760	1 (1.01%)	8

Fonte: BDPP/SC, 2009.

Vinte Produtos (ONU) mais transportados na BR 101 Norte

Nº ONU	Total № ONU	Classe	Nº ONU	Total № ONU	Classe
1203	275 (16.91%)	3	1760	27 (1.66%)	8
1170	123 (7.56%)	3	1866	25 (1.54%)	3
1075	111 (6.83%)	2	3077	19 (1.17%)	9
3082	84 (5.17%)	9	1073	18 (1.11%)	2
1202	76 (4.67%)	3	1830	18 (1.11%)	8
1263	73 (4.49%)	3	1268	18 (1.11%)	3
1824	49 (3.01%)	8	1307	17 (1.05%)	3
1993	41 (2.52%)	3	1863	17 (1.05%)	3
1361	33 (2.03%)	4	1072	16 (0.98%)	2
2055	29 (1.78%)	3	1791	16 (0.98%)	8

Fonte: BDPP/SC, 2009.

Vinte Produtos (ONU) mais transportados na BR 101 Sul

Nº ONU	Total Nº ONU	Classe	Nº ONU	Total № ONU	Classe
1203	275 (16.91%)	3	1760	27 (1.66%)	8
1170	123 (7.56%)	3	1866	25 (1.54%)	3
1075	111 (6.83%)	2	3077	19 (1.17%)	9
3082	84 (5.17%)	9	1073	18 (1.11%)	2
1202	76 (4.67%)	3	1830	18 (1.11%)	8
1263	73 (4.49%)	3	1268	18 (1.11%)	3
1824	49 (3.01%)	8	1307	17 (1.05%)	3
1993	41 (2.52%)	3	1863	17 (1.05%)	3
1361	33 (2.03%)	4	1072	16 (0.98%)	2
2055	29 (1.78%)	3	1791	16 (0.98%)	8

Fonte: BDPP/SC, 2009.

Vinte Produtos (ONU) mais transportados na BR 282

Nº ONU	Total № ONU	Classe	Nº ONU	Total № ONU	Classe
1203	46 (16.25%)	3	2069	7 (2.47%)	5
1202	24 (8.48%)	3	2794	6 (2.12%)	8
1075	19 (6.71%)	2	1001	6 (2.12%)	2
1170	16 (5.65%)	3	1072	6 (2.12%)	2
1993	15 (5.3%)	3	1066	5 (1.77%)	2
2783	15 (5.3%)	6	1006	5 (1.77%)	2
1499	14 (4.95%)	5	2071	5 (1.77%)	9
3077	14 (4.95%)	9	2992	3 (1.06%)	6
3082	12 (4.24%)	9	1956	3 (1.06%)	2
1824	7 (2.47%)	8	1263	3 (1.06%)	3

Fonte: BDPP/SC, 2009.

ANEXO C - Acidentes registrados envolvendo produtos perigosos nas rodovias estaduais de SC do ano de 2001 até 2011

DADOS ESTATÍSTICOS SOBRE ACIDENTES ENVOLVENDO PRODUTOS PERIGOSOS PERÍODO: julho à Dezembro 2001

ROD	DATA	Km	MUNICÍPIO	TIPO ACID	VEIC	FERIDOS	MORTOS	ONU
SC438	07/07/01	145,8	Lauro Müller	Abalroamento - Transversal frontal	2	0	0	1362
SC470	26/07/01	36	Gaspar	Abalroamento - Transversal frontal	2	1	0	1075
SC438	26/07/01	149,4	Lauro Müller	Abalroamento - Transversal	2	0	0	1362
SC404	04/10/01	6,2	Florianópolis	Colisão - Frontal	2	0	0	1203
SC474	10/10/01	65,3	Blumenau	Choque - Outro Choque - Veiculo parado	2	0	0	1075
SC470	09/11/01	8	Ilhota	Tombamento	3	2	0	1075
SCT480	12/11/01	142,5	Chapecó	Choque - Outro Choque - Canaleta	2	0	0	1748
SC468	21/11/01	88,9	Cordilheira Alta	Saída de pista - Seguida de tombamento	1	1	0	2810
SC408	23/12/01	88	Biguaçu	Abalroamento - Longitudinal sentido oposto	2	0	1	1203
SC467	24/12/01	9,987	Abelardo Luz	Tombamento	1	2	0	1361
TOTAL D	TOTAL DE ACIDENTES ENVOLVENDO PRODUTO PERIGOSO 10 19 6 1							

Fonte: Setor de Estatistica PMRv/DEINFRA

DADOS ESTATÍSTICOS SOBRE ACIDENTES ENVOLVENDO PRODUTOS PERIGOSOS PERÍODO: janeiro à Dezembro 2002

ROD	DATA	Km	MUNICÍPIO	TIPO ACID	VEIC	FERIDOS	MORTOS	ONU
SC403	01/01/02	6,5	Florianópolis	Abalroamento - Longitudinal mesmo sentido	2	0	0	1075
SC438	30/01/02	130,7	Lauro Müller	Abalroamento - Longitudinal sentido oposto	2	0	0	1263
SC438	30/03/02	153,7	Lauro Müller	Outro - Tipo de acidente	2	0	0	1075
SC444	02/04/02	12,7	Içara	Abalroamento - Longitudinal mesmo sentido	2	0	0	IGNOR.
SC445	11/04/02	48,45	Siderópolis	Abalroamento - Longitudinal sentido oposto	2	1	0	1075
SC302	20/04/02	264	Laurentino	Atropelamento - Pedestre	1	1	0	1075
SC474	21/04/02	41	Massaranduba	Tombamento	2	0	0	1073
SC303	26/04/02	177,09	Rio das Antas	Colisão - Frontal	2	1	0	1075
SC438	01/06/02	136	Lauro Müller	Abalroamento - Longitudinal sentido oposto	2	0	0	1075
SC456	07/06/02	13,04	Fraiburgo	Abalroamento - Longitudinal sentido oposto	2	0	0	1075
SCT480	12/06/02	89,677	Xanxerê	Abalroamento - Longitudinal sentido oposto	2	2	0	1075
SC443	18/07/02	25	Morro Fumaça	Colisão - Traseira	3	0	0	1075
SC446	06/08/02	47,9	Criciúma	Abalroamento - Transversal	3	1	0	1075
SC447	17/08/02	50,7	Criciúma	Colisão - Frontal	2	1	0	1361
SC470	20/08/02	39,2	Blumenau	Choque - Outro Choque - Veículo Parado.	4	0	0	3147
SC438	08/09/02	155,1	Lauro Müller	Abalroamento - Transversal	2	1	0	1075
SC445	19/09/02	50,7	Criciúma	Abalroamento - Longitudinal mesmo sentido	3	0	0	1075
SC445	23/09/02	51,4	Criciúma	Abalroamento - Longitudinal sentido oposto	2	1	1	1361
SCT283	12/11/02	103,001	Guatambu	Colisão - Traseira	2	1	0	1361
SC486	22/11/02	28,7	Brusque	Abalroamento - Longitudinal sentido oposto	2	2	0	1719
SC408	11/12/02	95	Biguaçu	Abalroamento - Longitudinal sentido oposto	2	0	0	1075
SCT283	19/12/02	164,717	Palmitos	Saída de pista - Seguida de tombamento	1	1	0	1075
SC438	20/12/02	196	Gravatal	Colisão - Traseira	3	4	0	1202
TOTAL DI	ACIDENTES EI	NVOLVEND	O PRODUTO PERIG	OSO = 23	50	17	1	

Fonte: Setor de Estatistica PMRv/DEINFRA

ROD	DATA	Km	MUNICÍPIO	TIPO ACID	VEIC	FERIDOS	MORTOS	ONU
SC416	08/02/03	23	Blumenau	Saída de pista - Seguida de choque	1	0	0	1203
SC301	24/02/03	81,66	Joinville	Saída de pista - Seguida de choque	1	1	0	IGNOR.
SC439	24/03/03	137,5	Grão Pará	Abalroamento - Transversal	2	1	0	1203
SC446	26/04/03	14,3	Urussanga	Colisão - Frontal	3	0	1	1361
SC425	23/05/03	84,2	Otacílio Costa	Outro - Tipo de acidente	2	1	0	1203
SC408	03/06/03	96	Biguaçu	Colisão - Traseira	2	0	0	1203
SC473	23/06/03	82,4	Guaraciaba	Abalroamento - Longitudinal sentido oposto	2	0	0	1056
SC445	19/07/03	46,6	Siderópolis	Tombamento	1	0	0	1361
SC302	25/07/03	283,18	Aurora	Choque - Outro Choque - Canaleta	1	0	0	1075
SC302	08/08/03	90,9	Caçador	Tombamento	1	0	0	1075
SC438	23/08/03	131,3	Lauro Müller	Abalroamento - Longitudinal sentido oposto	2	0	0	1203
SC423	29/10/03	139	Taió	Saída de pista - Seguida de tombamento	1	1	0	1202
SC445	04/12/03	0,2	Morro da Fumaça	Abalroamento - Longitudinal sentido oposto	2	1	0	1202
SC468	16/12/03	72,394	Coronel Freitas	Abalroamento - Longitudinal sentido oposto	2	0	0	IGNOR.
SCT477	17/12/03	10,3	Canoinhas	Saída de pista - Seguida de capotamento	1	0	0	1361
SC443	22/12/03	19,85	Criciúma	Saída de pista - Seguida de tombamento	1	0	0	3082
TOTAL D	TOTAL DE ACIDENTES ENVOLVENDO PRODUTO PERIGOSO = 16 25 5							

Fonte: Setor de Estatistica PMRv/DEINFRA

DADOS ESTATÍSTICOS SOBRE ACIDENTES ENVOLVENDO PRODUTOS PERIGOSOS PERÍODO: janeiro à Dezembro 2004

ROD	DATA	Km	MUNICÍPIO	TIPO ACID	VEIC	FERIDOS	MORTOS	ONU
SCT280	02/01/04	265,07	Irineépolis	Collado - Trascira	2	1	0	3017
SCT480	16/01/04	57,018	Ipusçu	Saida de pista - Seguida de choque	1	1	0	1203
SC445	12/03/04	4	Morro da Fumaça	Abalroamento - Transversal	3	0	0	IGNOR
SC445	20/03/04	43	Siderópolis	Choque - Outro Choque - Trevo	1	0	0	1361
SC447	14/04/04	30,7	Siderópolis	Abalroamento - Transversal	2	1	0	1075
SC467	28/04/04	31,9	Bom Jesus	Abalroamento - Longitudinal mesmo sentido	1	0	0	1361
SC438	19/05/04	163,429	Orleans	Colisão - Trassira	3	0	0	3286
SC444	09/06/04	5,98	Içara	Atropelamento - Pedestre	1	1	0	1203
SC302	24/06/04	350,45	Alfredo Wagner	Abalroamento - Transversal	2	1	0	1203
SC444	01/07/04	11,03	Içara	Collado - Trassira	2	0	0	2209
SC411	01/07/04	73,2	Tijucas	Abalroamento - Longitudinal mesmo sentido	2	0	0	1203
SC441	02/07/04	10,1	Treze de Maio	Abalroamento - Longitudinal sentido oposto	3	2	1	1499
SC401	23/07/04	34,8	Florianópolis	Colisão - Trassira	2	1	0	1075
SC447	26/07/04	28,89	Siderópolis	Choque - Veiculo parado	2	0	0	1361
SCT283	20/09/04	76,55	Chapecó	Choque - Outro Choque - Cabeceira de Ponte	1	0	0	1263
SC453	11/11/04	25,8	Fraiburgo	Saida de pista - Seguida de tombamento	1	1	0	1075
TOTAL D	E ACIDENTES E	NVOLVENDO I	=16	29	9	1		

Fonte: Setor de Estatistica PMRv/DEINFRA

RODOVIA	DATA	Km	MUNICÍPIO	TIPO ACID	VEIC ENV	FERIDOS	MORTOS	ONU
SC 445	25/01/05	50,4	Criciuma	Abalroamento Logitudinal	3	1	0	1361
SC438	18/02/05	132,3	Lauro Muller	Abalroamento Logitudinal	2	0	0	1202
SC 403	22/03/05	1,1	Florianópolis	Choque Veiculo Parado	2	0	0	1075
SC 411	23/03/05	68	Canelinha	Abalroamento Transversal	2	1	0	1075
SC 438	26/03/05	132,98	Bom J. da Serra	Abalroamento Longitudinal	2	0	0	1202
SC 301	26/04/05	46,15	Joinville	Choque Veiculo Parado	2	0	0	1203
SCT 280	13/05/05	286,7	Porto União	Colisão Trascira	2	0	0	1760
SC 401	29/07/05	16,6	Florianópolis	Outro Tipo Acid. (Queda carga)	2	0	0	1075
SC 438	23/07/05	44,306	Painel	Saida Pista seguida Tombamento	1	0	0	1263
SC 413	01/07/05	58,55	Massaranduba	Abalroamento Longitudinal	2	1	0	1791
SC 468	22/07/05	51,658	São L. d'Oeste	Saida Pista seguida Tombamento	1	0	0	1075
SC 444	27/08/05	2,2	Criciuma	Abalroamento Transversal	3	1	0	1263
SC 468	19/10/05	51,261	São L. d'Oeste	Abalroamento Longitudinal	3	0	0	2734
SC 453	09/11/05	11,8	Lebom Regis	Tombamento	1	0	0	1294
SC 452	02/12/05	56,95	Agua Doce	Abalroamento Transversal	2	2	0	1203
TOTAL DE A	CIDENTES	ENVOL	VENDO PRODUTO	15	30	6	0	

Fonte: Setor de Estatistica BPMRv/Deinfra

DADOS ESTATÍSTICOS SOBRE ACIDENTES ENVOLVENDO PRODUTOS PERIGOSOS PERÍODO: janeiro à Dezembro 2006

Tatabas, juntas a actualis association								
RODOVIA	DATA	Km	MUNICÍPIO	TIPO ACID	VEIC ENV	FERIDOS	MORTOS	ONU
SC 410	31/01/06	14,3	Gov. Celso Ramos	Colisão Trascira	2	0	0	1075
SC 470	31/01/06	1,4	Itajai	Abalroamento Transversal	2	1	0	1203
SC 411	06/02/06	15,3	Gaspar	Abalroamento Longitudinal	2	1	0	Ignorado
SC 470	02/05/06	0,3	Itajai	Abalroamento Transversal	2	1	0	1203
SC 411	23/03/06	32,5	Brusque	Colisão Frontal	2	1	0	1202
SC 302	18/09/06	145,2	Sta Cecilia	Colisão Trascira	3	0	0	1361
SC 446	06/05/06	16,32	Criciuma	Abalroamento Transversal	3	0	0	1361
SC 445	02/06/06	0,646	Morro da Fumaça	Choque Veículo parado	2	0	0	1075
SC 302	05/04/06	305,8	Ituporanga	Choque Veiculo parado	2	0	0	1075
SC 303	18/04/06	231,8	Lacerdópolis	Tombamento	1	1	0	1075
SC 472	30/03/06	26,95	Itapiranga	Tombamento	1	0	0	1075
SCT 283	31/05/06	112	Planalto Alegre	Tombamento	1	0	0	Agretéxico
SC 446	28/04/06	0	Orleans	Tombamento	1	0	0	3082, 1993, 1760, 3017, 3351, 3071
SC 438	14/09/06	178,7	São Ludgero	Tombamento	1	1	0	1361
SCT 280	27/01/06	237,9	Canoinhas	Abalroamento Transversal	2	1	0	1361
SC 468	02/05/06	61,4	Cel Freitas	Abalroamento Longitudinal	2	0	0	1075
SC 438	11/12/06	106,4	Bom Jardim Serra	Tombamento	1	1	0	1760
SC 302	25/10/06	25,5	Matos Costa	Saida Pista Seg.Capotamento	1	0	0	1075
SC 302	29/11/06	55,4	Calmom	Saida Pista Seg. Capotamento	1	1	0	1203
SC 451	01/06/06	134,6	Caçador	Saida Pista Seguida Choque	1	0	0	2794
TOTAL DE A	CIDENTES 1	ENVOLVEND	O PRODUTO PERIG	20	33	9	0	

Fonte: Setor de Estatistica BPMRv/Deinfra

ROD.	DATA	Km	MUNICÍPIO	TIPO ACID	VEIC	FERIDOS	MORTOS	ONU
SC 486	28/08/07	10,7	ITAJAÍ	ABALROAMENTO LONG.	3	1	0	1203
SC 301	11/05/07	132,3	SÃO BENTO SUL	TOMBAMENTO	1	0	0	1263
SC 446	14/06/07	25,1	URUSSANGA	COLISÃO FRONTAL	2	1	0	1202
SC 445	27/09/07	7,62	MORRO FUMAÇA	ABALROAMENTO TRANSV.	2	0	0	1236
SC 446	05/12/07	18,8	URUSSANGA	ABALROAMENTO LONG.	2	2	0	1361
SC 303	02/05/07	236	IBICARÉ	ABALROAMENTO LONG.	2	1	1	1075
SCT 283	11/10/07	163	PALMITOS	TOMBAMENTO	1	0	0	1202
SC 474	18/01/07	50,5	BLUMENAU	ABALROAMENTO LONG.	2	0	0	1203 / 1075
SC 413	13/04/07	56,1	MASSARANDUBA	COLISÃO TRASEIRA	2	0	0	1203
SC 438	06/02/07	140,7	LAURO MULLER	ABALROAMENTO LONG.	2	0	0	1719
SC438	09/05/07	152	LAURO MULLER	ABALROAMENTO TRANSV.	2	1	0	1361
SC 468	21/09/07	20,5	NOVO HORIZONTE	SAIDA PISTA SEG. CHOQUE	1	0	1	3077
SCT 283	08/01/07	13,5	CONCÓRDIA	SAIDA PISTA SEG. CHOQUE	2	0	0	1075
SCT 283	22/12/07	64,5	ARVOREDO	SAIDA PISTA SEG. CHOQUE	1	0	0	1263
SCT 283	14/11/07	16,9	CONCÓRDIA	ABALROAMENTO TRANSV.	2	0	0	1759
TOTAL DE	ACIDENT	ES ENV	OLVENDO PRODUT	15	27	6	2	

Fonte: Setor de Estatistica BPMRv/Deinfra

DADOS ESTATÍSTICOS SOBRE ACIDENTES ENVOLVENDO PRODUTOS PERIGOSOS PERÍODO: janeiro à Dezembro 2008

ROD	DATA	Km	MUNICÍPIO	TIPO ACID	VEIC	FERIDOS	MORTOS	ONU
SC 470	16/01/08	3,6	ITAJAİ	ABALROAMENTO LONG.	2	0	0	2811
SC 446	07/02/08	17,4	URUSSANGA	ABALROAMENTO LONG.	2	0	0	1361
SC 303	20/03/08	293,9	CAPINZAL	COLISÃO FRONTAL	2	1	0	1075
SC 303	17/04/08	289,5	CAPINZAL	SAIDA PISTA SEG. TOMB.	1	1	0	1203
SC 468	12/03/08	88,9	CORDILHEIRA ALTA	SAIDA PISTA SEG. CAPOT	1	1	0	1202
SC 301	07/02/08	6,2	SÃO F. DO SUL	SAIDA PISTA SEG. CHOQUE	1	0	0	2995
SC 451	24/02/08	120,4	AGUA DOCE	SAIDA PISTA SEG. TOMB.	1	1	0	1203
SC 468	04/05/08	21,2	São L. D'Oeste	ABALROAMENTO LONG.	2	1	0	1075
SC 468	04/07/08	14,55	Novo Horizonte	COLISÃO TRASEIRA/TOMB.	3	3	0	1202
SC 440	05/06/08	30	TUBARÃO	TOMBAMENTO	1	0	0	1361
SC 302	14/07/08	130,8	LEBOM REGIS	SAIDA PISTA SEG. CAPOT.	1	0	0	1977
SC 438	03/07/08	150,6	LAURO MULLER	SAÍDA PISTA SEG. CHOQUE	1	0	0	1361
SC 430	14/07/08	30,25	URUBICI	SAÍDA PISTA SEG. CHOQUE	1	0	0	3082
SC 438	08/09/08	12	ITAJAÍ	ABALROAMENTO TRANSV.	2	0	0	1202
SC 446	16/09/08	27,8	COCAL DO SUL	COLISÃO TRASEIRA/TOMB.	3	0	0	1361
SC 438	23/09/08	89,7	SÃO JOAQUIM	SAÍDA PISTA SEG. TOMB.	1	0	0	1263
SC 468	17/10/08	70,4	CEL FREITAS	SAÍDA PISTA SEG. CAPOT.	1	1	0	1170
TOTAL DI	EACIDENTES	COM PRODU	TO PERIGOSO	21	26	9	0	

Fonte: Setor de Estatistica PMRv/DEINFRA

ROD	DATA	Km	MUNICÍPIO	TIPO ACID	VEIC	FERIDOS	MORTOS	ONU
SC458	11-jan	178,20	Capão Alto	Tombamento	1	2	0	1203
SC438	26-jan	181,95	Braço do Norte	Abalroamento Transversal	2	1	0	Ignorado
SC 430	27-fev	31,95	Urubiçi	Tombamento	2	1	0	1075
SC 467	8-mar	0,98	Abelardo Luz	Saida de Pista	1	0	0	Ignorado
SC 473	23-mar	47,23	Campo Erê	Saida Pista seg. Tombamento	1	0	0	1263
SC 413	6-abr	15,40	Joinville	Choque Veiculo Parado	2	0	0	1294
SC454	18-abr	46,25	Catanduvas	TombamentoChoque - Barranco	1	2	1	
SC 469	14-mai	39,48	Serra Alta	Colisão Frontal	2	1	2	Ignorado
SC 429	24-jul	16,10	Lontras	Saida Pista Seg. Capotamento	1	1	0	1202
SC 452	24-jul	63,30	Luzema	Colisão Frontal	2	0	1	1361
SC 446	30-jul	49,75	Crichema	Abalroamento Longitudinal	2	0	0	1075
SC 438	31-jul	32,28	Painel	Saida Pista Seg. Capotamento	1	0	0	Ignorado
SCT480	5-ago	87,98	Xansere	Saida de Pinta	1	0	0	1202
SC 301	6-ago	97,00	Joinville	Saida de Pista	1	0	0	Ignorado
SCT283	3-set	84,70	Chapecó	Abalr. Long. Seg. tombamento	2	0	1	1075
SC 419	8-set	21,94	Italópolis	Saida Pista Seg. Tombamento	1	0	0	1202
SC 467	19-set	20,16	Abelardo Luz	Abalroamento Longitudinal	2	2	0	3082
SC 446	1-out	21,33	Urussanga	Saida Pista Seg. Tombamento	1	0	0	1340
SC 303	14-out	176,80	Rio as Antas	Saida Pista Seg. Capotamento	1	1	0	Ignorado
SC 469	17-out	20,60	Saltinho	Saida Pista Seg. Capotamento	1	0	0	1075
SC 426	21-out	25,40	Agrolandia	Choque Barranco	2	1	0	Ignorado
SCT477	20-nov	30,50	Papanduvas	Saida de Pista	1	1	0	1203
SC 451	7-dez	138,80	Caçador	Abalroamento Longitudinal	2	0	0	1263
SCT283	10-dez	76,54	Arvoredo	Saida Pista seg. choque def.	1	0	1	Ignorado
SC 301	24-dex	45,00	Araquari	Abalroamento Transversal	2	1	0	1075
SC 280	30-dez	262,85	[rincópolis	Abalroamento Longitudinal	2	1	0	1203
TOTAL DI	E ACIDENTE	S COM PRO	ODUTO PERIGOSO	25	38	15	6	

Fonte: Setor de Estatistica BPMRv/Deinfra

DADOS ESTATÍSTICOS SOBRE ACIDENTES ENVOLVENDO PRODUTOS PERIGOSOS PERÍODO: janeiro à Dezembro 2010

ROD	DATA	Km	MUNICÍPIO	TIPO ACID	VEIC	FERIDOS	MORTOS	ONU
SC401	21-set	1,10	Florianópolis	Choque - Poste	1	0	0	1075
SC401	30-out	18,70	Florianópolis	Choque - Defensa	1	0	0	1075
SC411	6-mar	33,40	Brusque	Abalroamento - Longitudinal sentido oposto	2	0	0	1202
SC456	24-mar	3,40	Fraiburgo	Choque - Outro Choque - Barraca.	1	3	0	1202
SC446	4-mar	30,10	Cocal do Sul	Abalroamento - Transversal	2	0	0	3082
SC302	7-ago	306,00	Ituporanga	Abalroamento - Longitudinal mesmo sentido	2	0	0	1203
SC440	28-jul	29,95	Tubarão	Abalroamento - Longitudinal sentido oposto	2	0	0	1057
SC466	7-ago	32,39	Xavantina	Saida de pista - Seguida de capotamento	1	0	1	1203
SC438	7-jan	30,77	Painel	Saida de pista - Seguida de capotamento	1	1	0	1263
SC493	7-jun	14,00	Belmonte	Abalroamento - Transversal frontal	2	0	0	1202
SCT280	31-mai	270,50	Irincópolis	Abalroamento - Longitudinal mesmo sentido	2	0	0	1202
SC438	10-jan	103,90	Bom Jardim da Serra	Colisão - Frontal	2	1	0	1263
TOTAL DE	EACIDENTE	S COM PR	ODUTO PERIGOSO	12	19	5	1	

Fonte: Setor de Estatistica BPMRv/Deinfra

DADOS ESTATÍSTICOS SOBRE ACIDENTES ENVOLVENDO PRODUTOS PERIGOSOS PERÍODO: janeiro à dezembro 2011

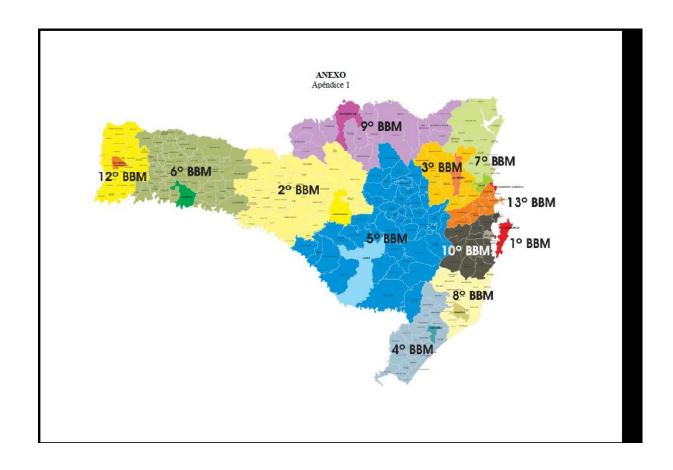
ROD	DATA	Km	MUNICÍPIO	TIPO ACID	VEIC	FERIDOS	MORTOS	ONU
SC301	16-mar	91,79	Joinville	Saida de pista - Outra Saida de Pista - Choque em Barranco.	1	0	1	ignorado
SC301	21-abr	91,80	Joinville	Saida de pista - Outra Saida de Pista - pista seguido de choque em barranco.	1	0	2	1203
SC439	12-mar	134,00	Grão Pará	Abalroamento - Longitudinal sentido oposto	2	3	1	1203
SC438	7-jun	186,00	Braço do Norte	Abalroamento - Transversal	2	1	0	1072
SC452	24-jan	42,10	Água Doce	Saida de pista - Seguida de choqueChoque - Barmanco	1	0		1203
SC438	10-jan	2,83	Lages	Outro - Tipo de acidente - Afundamento de acostamento com risco de tombamento	1	0	0	Gases Div
SC419	26-mai	17,00	Itaiópolis	Abalroamento - Longitudinal sentido oposto	3	2	0	1323
SC422	2-jun	170,00	Taié	Abalroamento - Longitudinal sentido oposto	4	0	0	3257
SCSUL	2-jul	7,30	Florianópolis	Saida de pista - Seguida de choqueChoque - Outro Choque - Pórtico	1	0		1075
SC 438	20-nov	123,65	Lauro Muller	Abalroamento - Transversal	2	0		1263
SC 438	22-dez	131,30	Lauro Muller	Abalroamento - Longitudinal sentido oposto	2	0		2581
TOTAL D	TOTAL DE ACIDENTES COM PRODUTO PERIGOSO		RODUTO PERIGOSO	11	20	6	4	

Fonte: Setor de Estatistica BPMRv/Deinfra

ANEXO D – Portaria N° 32/CBMSC/2011

SECRETARIA DE SEGURANÇA PÚBLICA E DEFESA DO CIDADÃO CORPO DE BOMBEIROS MILITAR DE SANTA CATARINA GABINETE DO COMANDANTE

PORTARIA Nº 032/CBMSC/2011, de 10 de fevereiro de 2011.				
DOSC Nr, de	10.			
BCG n°, de 10.				


O COMANDANTE-GERAL DO CORPO DE BOMBEIROS MILITAR, no uso da atribuição que lhe confere o artigo artigo 53 do Ato das Disposições Constitucionais Transitórias da Constituição do Estado de Santa Catarina, combinado com o artigo 5°, da Lei Estadual nº 6.217, de 10 de fevereiro de 1983, alicerçado no artigo 108, caput, da Constituição do Estado de Santa Catarina e considerando o Decreto Executivo nº 3.711, de 10 Dez 10, que criou e ativou o 13° BBM e alterou a articulação do 7° BBM, resolve:

Art. 1º Redefinir e baixar para conhecimento da Corporação a circunscrição dos Batalhões de Bombeiro Militar ativados, em conformidade com os Apêndices 1 e 2 do ANEXO da presente Portaria.

Art. 2º Revogar a Portaria 080/CBMSC/2010, de 22 de abril de 2010.

Art. 3º Estabelecer que esta Portaria entre em vigor na data de sua publicação.

Cel BM – JOSÉ LUIZ MASNIK Comandante-Geral do Corpo de Bombeiros Militar

ANEXO Apêndice 2

BBM

1° BBM

2° BBM

2° BBM 2° BBM

2° BBM 2° BBM

2° BBM

2° BBM 2° BBM

2° BBM 2° BBM 2° BBM 2° BBM

2° BBM 2° BBM

2° BBM

	~	
CIDCIE	ATCICIDATE A	O 1° BBM
	VSC KIL A	CIT-KKM
CHICO		O I DDM

Florianópolis

30 Pinheiro Preto

34 Rio das Antas

39 Timbó Grande 40 Treze Tilias 41 Vargem 42 Vargem Bonita

35 Salto Veloso

38 Tangará

43 Videira

44 Zortéa

32 Ponte Alta do Norte 33 Presidente Castelo Branco

36 Santa Cecília 37 São Cristovão do Sul

31 Piratuba

Município

Nr

1

Nr	CUNSCRIÇÃO 2° BBM Município	BBM
1	Abdon Batista	2° BBM
2	Água Doce	2° BBM
3	Alto Bela Vista	2° BBM
4	Arroio Trinta	2° BBM
5	Brunópolis	2° BBM
6	Caçador	2° BBM
7	Campos Novos	2° BBM
8	Capinzal	2° BBM
9	Catanduvas	2° BBM
10	Celso Ramos	2° BBM
11	Curitibanos	2° BBM
12	Erval Velho	2° BBM
13	Fraiburgo	2° BBM
14	Frei Rogério	2° BBM
15	Herval d'Oeste	2° BBM
16	Ibiam	2° BBM
17	Ibicaré	2° BBM
18	Iomerê	2° BBM
19	Ipira	2° BBM
20	Irani	2° BBM
21	Jaborá	2° BBM
22	Joaçaba	2° BBM
23	Lacerdópolis	2° BBM
24	Lebon Régis	2° BBM
25	Luzerna	2° BBM
26	Macieira	2° BBM
27	Monte Carlo	2° BBM
28	Ouro	2° BBM
29	Peritiba	2° BBM
20	D: 4 : D :	20 777

CIRCI	NSCRI	$c_{\Lambda 0}$	30 E	PM

Nr	Município	BBM
1	Apiúna	3° BBM
2	Ascurra	3° BBM
3	Benedito Novo	3° BBM
4	Blumenau	3° BBM
5	Botuverá	3° BBM
6	Brusque	3° BBM
7	Doutor Pedrinho	3° BBM
8	Gaspar	3° BBM
9	Guabiruba	3° BBM
10	Indaial	3° BBM
11	Massaranduba	3° BBM
12	Pomerode	3° BBM
13	Rio dos Cedros	3° BBM
14	Rođeio	3° BBM
15	Timbó	3° BBM

CIRCUNSCRIÇÃO 4º BBM

CIRCUNSCRIÇÃO 4 BBM					
Nr	Município	BBM			
1	Araranguá	4° BBM			
3	Balneário Arroio do Silva	4° BBM			
_ 3	Balneário Gaivota	4° BBM			
4	Cocal do Sul	4° BBM			
5	Criciúma	4° BBM			
6	Ermo	4° BBM			
7	Forquilhinha	4° BBM			
8	Içara	4° BBM			
9	Jacinto Machado	4° BBM			
10	Lauro Muller	4° BBM			
11	Maracajá	4° BBM			
12	Meleiro	4° BBM			
13	Morro da Fumaça	4° BBM			
14	Morro Grande	4° BBM			
15	Nova Veneza	4° BBM			
16	Orleans	4° BBM			
17	Passo de Torres	4° BBM			
18	Praia Grande	4° BBM			
19	Santa Rosa do Sul	4° BBM			
20	São João do Sul	4° BBM			
21	Siderópolis	4° BBM			
22	Sombrio	4° BBM			
23	Timbé do Sul	4° BBM			
24	Treviso	4° BBM			
25	Turvo	4° BBM			
26	Urussanga	4° BBM			

(F1 2 do Apêndice 2, do ANEXO, à Portaria Nº 032/CBMSC/2011, de 10 de fevereiro de 2011)

CID	CITE	TC/C'D	TO		20	DDM
CIR	CUL	NOUN	$\mathbf{I} \cup P$	w	Э.	BBM

Nr	Município	BBM
1	Agrolândia	5° BBM
2	Agronômica	5° BBM
3	Alfredo Wagner	5° BBM
4	Anita Garibaldi	5° BBM
5	Atalanta	5° BBM
6	Aurora	5° BBM
7	Bocaina do Sul	5° BBM
8	Bom Jardim da Serra	5° BBM
9	Bom Retiro	5° BBM
10	Braço do Trombudo	5° BBM
11	Campo Belo do Sul	5° BBM
12	Capão Alto	5° BBM
13	Cerro Negro	5° BBM
14	Chapadão do Lageado	5° BBM
15	Correia Pinto	5° BBM
16	Dona Emma	5° BBM
17	Ibirama	5° BBM
18	Imbuia	5° BBM
19	Ituporanga	5° BBM
20	José Boiteux	5° BBM
21	Lages	5° BBM
22	Laurentino	5° BBM
23	Leoberto Leal	5° BBM
24	Lontras	5° BBM
25	Mirim Doce	5° BBM
26	Otacílio Costa	5° BBM
27	Paine1	5° BBM
28	Palmeira	5° BBM
29	Petrolândia	5° BBM
30	Ponte Alta	5° BBM
31	Pouso Redondo	5° BBM
32	Presidente Getúlio	5° BBM
33	Presidente Nereu	5° BBM
34	Rio do Campo	5° BBM
35	Rio do Oeste	5° BBM
36	Rio do Sul	5° BBM
37	Rio Rufino	5° BBM
38	Salete	5° BBM
39	Santa Terezinha	5° BBM
40	São Joaquim	5° BBM
41	São José do Cerrito	5° BBM
42	Taió	5° BBM
43	Trombudo Central	5° BBM
44	Urubici	5° BBM
45	Urupema	5° BBM
46	Vidal Ramos	5° BBM
47	Vitor Meireles	5° BBM
48	Witmarsum	5° BBM

Nr	Município	BBM
1	Abelardo Luz	6° BBM
2	Águas de Chapecó	6° BBM
3	Aguas Frias	6° BBM
4	Arabutã	6° BBM
5	Arvoredo	6° BBM
6	Bom Jesus	6° BBM
7	Bom Jesus do Oeste	6° BBM
8	Caibi	6° BBM
9	Campo Erê	6° BBM
10	Caxambu do Sul	6° BBM
11	Chapecó	6° BBM
12	Concórdia	6° BBM
13	Cordilheira Alta	6° BBM
14	Coronel Freitas	6° BBM
15	Coronel Martins	6° BBM
16	Cunhataí	6° BBM
17	Entre Rios	6° BBM
18	Faxinal dos Guedes	6° BBM
19	Formosa do Sul	6° BBM
20	Galvão	6° BBM
21	Guatambú	6° BBM
22	Ipuaçu	6° BBM
23	Ipumirim	6° BBM
24	Irati	6° BBM
25	Itá	6° BBM
26	Jardinópolis	6° BBM
27	Jupiá	6° BBM
28	Lajeado Grande	6° BBM
29	Lindóia do Sul	6° BBM
30	Marema	6° BBM
31	Modelo	6° BBM
32	Nova Erechim	6° BBM
33	Nova Itaberaba	6° BBM
34	Novo Horizonte	6° BBM
35	Ouro Verde	6° BBM
36	Paia1	6° BBM
37	Palmitos	6° BBM
38	Passos Maia	6° BBM
39	Pinhalzinho	6° BBM
40	Planalto Alegre	6° BBM
41	Ponte Serrada	6° BBM
42	Ouilombo	6° BBM
43	Saltinho	6° BBM
44	Santiago do Sul	6° BBM
45	São Bernardino	6° BBM
46	São Carlos	6° BBM
47	São Domingos	6° BBM

(F1 3 do Apêndice 2, do ANEXO, à Portaria Nº 032/CBMSC/2011, de 10 de fevereiro de 2011)

48	São Lourenço do Oeste	6° BBM
49	Saudades	6° BBM
50	Seara	6° BBM
51	Serra Alta	6° BBM
52	Sul Brasil	6° BBM
53	União do Oeste	6° BBM
54	Vargeão	6° BBM
55	Xanxerê	6° BBM
56	Xavantina	6° BBM
57	Xaxim	6° BBM

CIRCUNSCRIÇÃO 7° BBM

Nr	Município	BBM
1	Araquari	7° BBM
2	Balneário Barra do Sul	7° BBM
3	Barra Velha	7° BBM
4	Garuva	7° BBM
5	Guaramirim	7° BBM
6	Ilhota	7° BBM
_ 7	Itajaí	7° BBM
8	Itapoá	7° BBM
9	Jaraguá do Sul	7° BBM
10	Joinville	7° BBM
11	Luiz Alves	7° BBM
12	Navegantes	7° BBM
13	Penha	7° BBM
14	Piçarras	7° BBM
15	São Francisco do Sul	7° BBM
16	São João do Itaperiú	7° BBM
17	Schroeder	7° BBM

CIRCUNSCRIÇÃO 8° BBM

Nr	Município	BBM
1	Armazém	8° BBM
2	Braço do Norte	8° BBM
3	Capivari de Baixo	8° BBM
4	Garopaba	8° BBM
5	Grão Pará	8° BBM
6	Gravatal Gravatal	8° BBM
7	Imaruí	8° BBM
8	Imbituba	8° BBM
9	Jaguaruna	8° BBM
10	Laguna	8° BBM
11	Pedras Grandes	8° BBM
12	Rio Fortuna	8° BBM
13	Sangão	8° BBM
14	Santa Rosa de Lima	8° BBM
15	São Ludgero	8° BBM
16	São Martinho	8° BBM

17	Treze de Maio	8° BBM
18	Tubarão	8° BBM

CIRCUNSCRIÇÃO 9° BBM

Nr	Município	BBM
1	Bela Vista do Toldo	9° BBM
2	Calmon	9° BBM
3	Campo Alegre	9° BBM
4	Canoinhas	9° BBM
5	Corupá	9° BBM
6	Irineópolis	9° BBM
7	Itaiópolis	9° BBM
8	Mafra	9° BBM
9	Major Vieira	9° BBM
10	Matos Costa	9° BBM
11	Monte Castelo	9° BBM
12	Papanduva	9° BBM
13	Porto União	9° BBM
14	Rio Negrinho	9° BBM
15	São Bento do Sul	9° BBM
16	Três Barras	9° BBM

CIRCUNSCRIÇÃO 10° BBM

Nr	Município	BBM
1	Águas Mornas	10° BBM
2	Angelina	10° BBM
3	Anitápolis	10° BBM
4	Antônio Carlos	10° BBM
5	Biguaçu	10° BBM
6	Governador Celso Ramos	10° BBM
7	Palhoça	10° BBM
8	Paulo Lopes	10° BBM
9	Rancho Queimado	10° BBM
10	Santo Amaro da Imperatriz	10° BBM
11	São Bonifácio	10° BBM
12	São José	10° BBM
13	São Pedro de Alcântara	10° BBM

CIRCUNSCRIÇÃO 12° BBM

Nr	Município	BBM
1	Anchieta	12° BBM
2	Bandeirante	12° BBM
3	Barra Bonita	12° BBM
4	Belmonte	12° BBM
5	Cunha Porã	12° BBM
6	Descanso	12° BBM
7	Dionísio Cerqueira	12° BBM
8	Flor do Sertão	12° BBM
9	Guaraciaba	12° BBM

(F1 4 do Apêndice 2, do ANEXO, à Portaria N° 032/CBMSC/2011, de 10 de fevereiro de 2011)

10	Guarujá do Sul	12° BBM
11	Iporã do Oeste	12° BBM
12	Iraceminha	12° BBM
13	Itapiranga	12° BBM
14	Maravilha	12° BBM
15	Mondaí	12° BBM
16	Palma Sola	12° BBM
17	Paraíso	12° BBM
18	Princesa	12° BBM
19	Riqueza	12° BBM
20	Romelândia	12° BBM
21	Santa Helena	12° BBM
22	Santa Terezinha do Progresso	12° BBM
23	São João do Oeste	12° BBM
24	São José do Cedro	12° BBM
25	São Miguel da Boa Vista	12° BBM
26	São Miguel do Oeste	12° BBM
27	Tigrinhos	12° BBM
28	Tunápolis	12° BBM

CIRCUNSCRIÇÃO 13° BBM

Nr	Município	BBM
1	Balneário Camboriú	13° BBM
2	Bombinhas	13° BBM
3	Camboriú	13° BBM
4	Canelinha	13° BBM
5	Itapema	13° BBM
6	Major Gercino	13° BBM
7	Nova Trento	13° BBM
8	Porto Belo	13° BBM
9	São João Batista	13° BBM
10	Tijucas	13° BBM